Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
                
    
    http://hdl.handle.net/11320/9224| Tytuł: | Rings of Fractions and Localization | 
| Autorzy: | Watase, Yasushige | 
| Słowa kluczowe: | rings of fractions localization total-quotient ring quotient field | 
| Data wydania: | 2020 | 
| Data dodania: | 10-cze-2020 | 
| Wydawca: | DeGruyter Open | 
| Źródło: | Formalized Mathematics, Volume 28, Issue 1, Pages 79-87 | 
| Abstrakt: | This article formalized rings of fractions in the Mizar system [3], [4]. A construction of the ring of fractions from an integral domain, namely a quotient field was formalized in [7]. This article generalizes a construction of fractions to a ring which is commutative and has zero divisor by means of a multiplicatively closed set, say S, by known manner. Constructed ring of fraction is denoted by S ~ R instead of S− 1 R appeared in [1], [6]. As an important example we formalize a ring of fractions by a particular multiplicatively closed set, namely R \ p, where p is a prime ideal of R. The resulted local ring is denoted by R p. In our Mizar article it is coded by R ~p as a synonym. This article contains also the formal proof of a universal property of a ring of fractions, the total-quotient ring, a proof of the equivalence between the total-quotient ring and the quotient field of an integral domain. | 
| Afiliacja: | Suginami-ku Matsunoki, 3-21-6 Tokyo, Japan | 
| URI: | http://hdl.handle.net/11320/9224 | 
| DOI: | 10.2478/forma-2020-0006 | 
| ISSN: | 1426-2630 | 
| e-ISSN: | 1898-9934 | 
| Typ Dokumentu: | Article | 
| metadata.dc.rights.uri: | http://creativecommons.org/licenses/by-sa/3.0/pl/ | 
| Występuje w kolekcji(ach): | Formalized Mathematics, 2020, Volume 28, Issue 1 | 
Pliki w tej pozycji:
| Plik | Opis | Rozmiar | Format | |
|---|---|---|---|---|
| forma_2020_28_01_0006.pdf | 268,19 kB | Adobe PDF | Otwórz | 
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL
     
    


