REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/9224
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorWatase, Yasushige-
dc.date.accessioned2020-06-10T10:49:48Z-
dc.date.available2020-06-10T10:49:48Z-
dc.date.issued2020-
dc.identifier.citationFormalized Mathematics, Volume 28, Issue 1, Pages 79-87pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/9224-
dc.description.abstractThis article formalized rings of fractions in the Mizar system [3], [4]. A construction of the ring of fractions from an integral domain, namely a quotient field was formalized in [7]. This article generalizes a construction of fractions to a ring which is commutative and has zero divisor by means of a multiplicatively closed set, say S, by known manner. Constructed ring of fraction is denoted by S ~ R instead of S− 1 R appeared in [1], [6]. As an important example we formalize a ring of fractions by a particular multiplicatively closed set, namely R \ p, where p is a prime ideal of R. The resulted local ring is denoted by R p. In our Mizar article it is coded by R ~p as a synonym. This article contains also the formal proof of a universal property of a ring of fractions, the total-quotient ring, a proof of the equivalence between the total-quotient ring and the quotient field of an integral domain.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsUznanie autorstwa-Na tych samych warunkach 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/pl/*
dc.subjectrings of fractionspl
dc.subjectlocalizationpl
dc.subjecttotal-quotient ringpl
dc.subjectquotient fieldpl
dc.titleRings of Fractions and Localizationpl
dc.typeArticlepl
dc.identifier.doi10.2478/forma-2020-0006-
dc.description.AffiliationSuginami-ku Matsunoki, 3-21-6 Tokyo, Japanpl
dc.description.referencesMichael Francis Atiyah and Ian Grant Macdonald. Introduction to Commutative Algebra, volume 2. Addison-Wesley Reading, 1969.pl
dc.description.referencesJonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized Mathematics, 9(3):565–582, 2001.pl
dc.description.referencesGrzegorz Bancerek, Czesław Bylinski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Bylinski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesArtur Korniłowicz and Christoph Schwarzweller. The first isomorphism theorem and other properties of rings. Formalized Mathematics, 22(4):291–301, 2014. doi:10.2478/forma-2014-0029.pl
dc.description.referencesHideyuki Matsumura. Commutative Ring Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2nd edition, 1989.pl
dc.description.referencesChristoph Schwarzweller. The field of quotients over an integral domain. Formalized Mathematics, 7(1):69–79, 1998.pl
dc.description.referencesYasushige Watase. Zariski topology. Formalized Mathematics, 26(4):277–283, 2018. doi:10.2478/forma-2018-0024.pl
dc.identifier.eissn1898-9934-
dc.description.firstpage79pl
dc.description.lastpage87pl
dc.identifier.citation2Formalized Mathematicspl
Występuje w kolekcji(ach):Formalized Mathematics, 2020, Volume 28, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma_2020_28_01_0006.pdf268,19 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons