

Rings of Fractions and Localization

Yasushige Watase Suginami-ku Matsunoki 3-21-6 Tokyo, Japan

Summary. This article formalized rings of fractions in the Mizar system [3], [4]. A construction of the ring of fractions from an integral domain, namely a quotient field was formalized in [7].

This article generalizes a construction of fractions to a ring which is commutative and has zero divisor by means of a multiplicatively closed set, say S, by known manner. Constructed ring of fraction is denoted by $S^{\sim}R$ instead of $S^{-1}R$ appeared in [1], [6]. As an important example we formalize a ring of fractions by a particular multiplicatively closed set, namely $R < \mathfrak{p}$, where \mathfrak{p} is a prime ideal of R. The resulted local ring is denoted by $R_{\mathfrak{p}}$. In our Mizar article it is coded by $R^{\sim}\mathfrak{p}$ as a synonym.

This article contains also the formal proof of a universal property of a ring of fractions, the total-quotient ring, a proof of the equivalence between the totalquotient ring and the quotient field of an integral domain.

MSC: 13B30 16S85 68V20

Keywords: rings of fractions; localization; total-quotient ring; quotient field

MML identifier: RINGFRAC, version: 8.1.09 5.60.1371

1. Preliminaries:

UNITS, ZERO DIVISORS AND MULTIPLICATIVELY-CLOSED SET

From now on R, R_1 denote commutative rings, A, B denote non degenerated, commutative rings, o, o_1 , o_2 denote objects, r, r_1 , r_2 denote elements of R, a, a_1 , a_2 , b, b_1 denote elements of A, f denotes a function from R into R_1 , and \mathfrak{p} denotes an element of the spectrum of A.

Let R be a commutative ring and r be an element of R. We say that r is zero-divisible if and only if

(Def. 1) there exists an element r_1 of R such that $r_1 \neq 0_R$ and $r \cdot r_1 = 0_R$.

Let A be a non degenerated, commutative ring. Let us observe that there exists an element of A which is zero-divisible.

Let us consider A.

A zero-divisor of A is a zero-divisible element of A. Now we state the propositions:

(1) 0_A is a zero-divisor of A.

(2) 1_A is not a zero-divisor of A.

Let us consider A. The functor $\operatorname{ZeroDivSet}(A)$ yielding a subset of A is defined by the term

(Def. 2) $\{a, where a \text{ is an element of } A : a \text{ is a zero-divisor of } A\}.$

The functor NonZeroDivSet(A) yielding a subset of A is defined by the term (Def. 3) $\Omega_A \setminus (\text{ZeroDivSet}(A)).$

Let us note that ZeroDivSet(A) is non empty and NonZeroDivSet(A) is non empty.

Now we state the propositions:

- (3) $0_A \notin \text{NonZeroDivSet}(A)$. The theorem is a consequence of (1).
- (4) If A is an integral domain, then $\{0_A\} = \text{ZeroDivSet}(A)$. The theorem is a consequence of (1).
- (5) $\{1_R\}$ is multiplicatively closed.

Let us consider R. One can check that there exists a non empty subset of R which is multiplicatively closed.

Let us consider A. Let V be a subset of A. We say that V is without zero if and only if

(Def. 4) $0_A \notin V$.

Let us observe that there exists a non empty, multiplicatively closed subset of A which is without zero.

Now we state the propositions:

- (6) $\Omega_A \setminus \mathfrak{p}$ is multiplicatively closed.
- (7) Let us consider a proper ideal J of A. Then multClSet(J, a) is multiplicatively closed.

Let us consider A. One can check that NonZeroDivSet(A) is multiplicatively closed.

Let us consider R. The functor UnitSet(R) yielding a subset of R is defined by the term

(Def. 5) $\{a, \text{ where } a \text{ is an element of } R : a \text{ is a unit of } R\}.$

Let us observe that UnitSet(R) is non empty.

Now we state the proposition:

(8) If $r_1 \in \text{UnitSet}(R)$, then r_1 is right mult-cancelable.

PROOF: Consider r_2 such that $r_2 \cdot r_1 = 1_R$. For every elements u, v of R such that $u \cdot r_1 = v \cdot r_1$ holds u = v. \Box

Let us consider R. Let r be an element of R. Assume $r \in \text{UnitSet}(R)$. The functor recip(r) yielding an element of R is defined by

```
(Def. 6) it \cdot r = 1_R.
```

We introduce the notation r^{-1} as a synonym of recip(r).

Let u, v be elements of R. The functor u/v yielding an element of R is defined by the term

(Def. 7) $u \cdot \operatorname{recip}(u)$.

Let us consider a unit u of R and an element v of R. Now we state the propositions:

- (9) If f inherits ring homomorphism, then f(u) is a unit of R_1 and $f(u)^{-1} = f(u^{-1})$.
- (10) If f inherits ring homomorphism, then $f(v \cdot (u^{-1})) = f(v) \cdot (f(u)^{-1})$. The theorem is a consequence of (9).

2. Equivalence Relation of Fractions

In the sequel S denotes a non empty, multiplicatively closed subset of R. Let us consider R and S. The functor Frac(S) yielding a subset of (the carrier of R) × (the carrier of R) is defined by

(Def. 8) for every set $x, x \in it$ iff there exist elements a, b of R such that $x = \langle a, b \rangle$ and $b \in S$.

Now we state the proposition:

(11) $\operatorname{Frac}(S) = \Omega_R \times S.$

Let us consider R and S. Let us observe that Frac(S) is non empty.

The functor $\operatorname{frac1}(S)$ yielding a function from R into $\operatorname{Frac}(S)$ is defined by

(Def. 9) for every object o such that $o \in$ the carrier of R holds $it(o) = \langle o, 1_R \rangle$.

From now on u, v, w, x, y, z denote elements of Frac(S).

Let us consider R and S. Let u, v be elements of Frac(S). The functor FracAdd(u, v) yielding an element of Frac(S) is defined by the term

(Def. 10)
$$\langle (u)_{\mathbf{1}} \cdot (v)_{\mathbf{2}} + (v)_{\mathbf{1}} \cdot (u)_{\mathbf{2}}, (u)_{\mathbf{2}} \cdot (v)_{\mathbf{2}} \rangle$$
.

One can verify that the functor is commutative.

The functor $\operatorname{FracMult}(u, v)$ yielding an element of $\operatorname{Frac}(S)$ is defined by the term

(Def. 11) $\langle (u)_{1} \cdot (v)_{1}, (u)_{2} \cdot (v)_{2} \rangle$.

One can check that the functor is commutative.

Let us consider x and y. The functors: x + y and $x \cdot y$ yielding elements of Frac(S) are defined by terms

(Def. 12) $\operatorname{FracAdd}(x, y)$,

(Def. 13) $\operatorname{FracMult}(x, y)$,

respectively. Now we state the propositions:

(12) $\operatorname{FracAdd}(x, \operatorname{FracAdd}(y, z)) = \operatorname{FracAdd}(\operatorname{FracAdd}(x, y), z).$

(13) $\operatorname{FracMult}(x, \operatorname{FracMult}(y, z)) = \operatorname{FracMult}(\operatorname{FracMult}(x, y), z).$

Let us consider R and S. Let x, y be elements of Frac(S). We say that $x =_{Fr_S} y$ if and only if

(Def. 14) there exists an element s_1 of R such that $s_1 \in S$ and $((x)_1 \cdot ((y)_2) - (y)_1 \cdot ((x)_2)) \cdot s_1 = 0_R$.

Now we state the propositions:

- (14) If $0_R \in S$, then $x =_{Fr_S} y$.
- (15) $x =_{Fr_S} x$.
- (16) If $x =_{Fr_S} y$, then $y =_{Fr_S} x$.
- (17) If $x =_{Fr_S} y$ and $y =_{Fr_S} z$, then $x =_{Fr_S} z$.

Let us consider R and S. The functor EqRel(S) yielding an equivalence relation of Frac(S) is defined by

(Def. 15) $\langle u, v \rangle \in it \text{ iff } u =_{Fr_S} v.$

Now we state the propositions:

- (18) $x \in [y]_{\text{EqRel}(S)}$ if and only if $x =_{Fr_S} y$.
- (19) $[x]_{\text{EqRel}(S)} = [y]_{\text{EqRel}(S)}$ if and only if $x =_{Fr_S} y$. PROOF: Set E = EqRel(S). If $[x]_E = [y]_E$, then $x =_{Fr_S} y$. $x \in [y]_E$. \Box

(20) If $x =_{Fr_S} u$ and $y =_{Fr_S} v$, then $\operatorname{FracMult}(x, y) =_{Fr_S} \operatorname{FracMult}(u, v)$.

(21) If $x =_{Fr_S} u$ and $y =_{Fr_S} v$, then $\operatorname{FracAdd}(x, y) =_{Fr_S} \operatorname{FracAdd}(u, v)$.

$$(22) \quad (x+y) \cdot z =_{Fr_S} x \cdot z + y \cdot z$$

Let us consider R and S. The functors: $0_R^{S \times S}$ and $I_R^{S \times S}$ yielding elements of Frac(S) are defined by terms

(Def. 16) $\langle 0_R, 1_R \rangle$,

(Def. 17) $\langle 1_R, 1_R \rangle$,

respectively. Now we state the proposition:

(23) Let us consider an element s of S. If $x = \langle s, s \rangle$, then $x =_{Fr_S} I_R^{S \times S}$.

3. Construction of Ring of Fractions

Let us consider R and S. The functor $\operatorname{FracRing}(S)$ yielding a strict double loop structure is defined by

(Def. 18) the carrier of it = Classes EqRel(S) and $1_{it} = [I_R^{S \times S}]_{\text{EqRel}(S)}$ and $0_{it} = [0_R^{S \times S}]_{\text{EqRel}(S)}$ and for every elements x, y of it, there exist elements a, b of Frac(S) such that $x = [a]_{\text{EqRel}(S)}$ and $y = [b]_{\text{EqRel}(S)}$ and (the addition of $it)(x, y) = [a + b]_{\text{EqRel}(S)}$ and for every elements x, y of it, there exist elements a, b of Frac(S) such that $x = [a]_{\text{EqRel}(S)}$ and for every elements x, y of it, there exist elements a, b of Frac(S) such that $x = [a]_{\text{EqRel}(S)}$ and $y = [b]_{\text{EqRel}(S)}$ and $(\text{the multiplication of } it)(x, y) = [a \cdot b]_{\text{EqRel}(S)}$.

We introduce the notation $S \sim R$ as a synonym of $\operatorname{FracRing}(S)$.

One can verify that $S \sim R$ is non empty.

Now we state the proposition:

(24) $0_R \in S$ if and only if $S \sim R$ is degenerated. The theorem is a consequence of (19).

In the sequel a, b, c denote elements of Frac(S) and x, y, z denote elements of $S \sim R$.

Now we state the propositions:

- (25) There exists an element a of $\operatorname{Frac}(S)$ such that $x = [a]_{\operatorname{EdRel}(S)}$.
- (26) If $x = [a]_{EqRel(S)}$ and $y = [b]_{EqRel(S)}$, then $x \cdot y = [a \cdot b]_{EqRel(S)}$. The theorem is a consequence of (19) and (20).
- (27) $x \cdot y = y \cdot x$. The theorem is a consequence of (25) and (26).
- (28) If $x = [a]_{EqRel(S)}$ and $y = [b]_{EqRel(S)}$, then $x + y = [a + b]_{EqRel(S)}$. The theorem is a consequence of (19) and (21).
- (29) $S \sim R$ is a ring.

PROOF: x + y = y + x. (x + y) + z = x + (y + z). $x + 0_{S \sim R} = x$. x is right complementable. $(x + y) \cdot z = x \cdot z + y \cdot z$. $x \cdot (y + z) = x \cdot y + x \cdot z$ and $(y + z) \cdot x = y \cdot x + z \cdot x$. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$. $x \cdot (1_{S \sim R}) = x$ and $1_{S \sim R} \cdot x = x$. \Box

Let us consider R and S. One can verify that $S \sim R$ is commutative, Abelian, add-associative, right zeroed, right complementable, associative, well unital, and distributive.

Now we state the proposition:

- (30) There exist elements r_1 , r_2 of R such that
 - (i) $r_2 \in S$, and
 - (ii) $z = [\langle r_1, r_2 \rangle]_{\text{EqRel}(S)}.$

The theorem is a consequence of (25).

In the sequel S denotes a without zero, non empty, multiplicatively closed subset of A.

Let us consider A and S. The canonical homomorphism of S into quotient field yielding a function from A into $S \sim A$ is defined by

(Def. 19) for every object o such that $o \in$ the carrier of A holds it(o) =

 $\left[\left(\operatorname{frac1}(S)\right)(o)\right]_{\operatorname{EqRel}(S)}.$

Let us observe that the canonical homomorphism of S into quotient field is additive, multiplicative, and unity-preserving.

Now we state the propositions:

- (31) Let us consider elements a, b of A. Then (the canonical homomorphism of S into quotient field)(a b) = (the canonical homomorphism of S into quotient field)(a) (the canonical homomorphism of S into quotient field)(b).
- (32) Suppose $0_A \notin S$. Then ker the canonical homomorphism of S into quotient field \subseteq ZeroDivSet(A). PROOF: For every o such that $o \in$ ker the canonical homomorphism of S into quotient field holds $o \in$ ZeroDivSet(A). \Box
- (33) Suppose $0_A \notin S$ and A is an integral domain. Then
 - (i) ker the canonical homomorphism of S into quotient field = $\{0_A\}$, and
 - (ii) the canonical homomorphism of S into quotient field is one-to-one.

PROOF: ker the canonical homomorphism of S into quotient field \subseteq ZeroDiv Set(A). ZeroDivSet $(A) = \{0_A\}$. For every objects x, y such that $x, y \in$ dom(the canonical homomorphism of S into quotient field) and (the canonical homomorphism of S into quotient field)(x) = (the canonical homomorphism of S into quotient field)(x) = (the canonical homomorphism of S into quotient field)(y) holds x = y. \Box

4. LOCALIZATION IN TERMS OF PRIME IDEALS

From now on \mathfrak{p} denotes an element of the spectrum of A.

Let us consider A and \mathfrak{p} . The functor $Loc(A, \mathfrak{p})$ yielding a subset of A is defined by the term

(Def. 20) $\Omega_A \setminus \mathfrak{p}$.

One can check that $Loc(A, \mathfrak{p})$ is non empty and $Loc(A, \mathfrak{p})$ is multiplicatively closed and $Loc(A, \mathfrak{p})$ is without zero.

The functor $A \sim \mathfrak{p}$ yielding a ring is defined by the term

(Def. 21) $\operatorname{Loc}(A, \mathfrak{p}) \sim A$.

One can verify that $A \sim \mathfrak{p}$ is non degenerated and $A \sim \mathfrak{p}$ is commutative. The functor LocIdeal(\mathfrak{p}) yielding a subset of $\Omega_{A \sim \mathfrak{p}}$ is defined by the term

- (Def. 22) {y, where y is an element of A~p : there exists an element a of Frac(Loc(A, p)) such that a ∈ p × Loc(A, p) and y = [a]_{EqRel(Loc(A, p))}}. Observe that LocIdeal(p) is non empty. In the sequel a, m, n denote elements of A~p. Now we state the propositions:
 - (34) LocIdeal(p) is a proper ideal of A~p.
 PROOF: Reconsider M = LocIdeal(p) as a subset of A~p. For every elements m, n of A~p such that m, n ∈ M holds m + n ∈ M. For every elements x, m of A~p such that m ∈ M holds x ⋅ m ∈ M. M is proper by [2, (19)], (19). □
 - (35) Let us consider an object x. Suppose $x \in \Omega_{A \sim \mathfrak{p}} \setminus (\text{LocIdeal}(\mathfrak{p}))$. Then x is a unit of $A \sim \mathfrak{p}$. The theorem is a consequence of (25) and (11).
 - (36) (i) $A \sim \mathfrak{p}$ is local, and

(ii) LocIdeal(\mathfrak{p}) is a maximal ideal of $A \sim \mathfrak{p}$.

PROOF: Reconsider $J = \text{LocIdeal}(\mathfrak{p})$ as a proper ideal of $A \sim \mathfrak{p}$. $A \sim \mathfrak{p}$ is local. J is a maximal ideal of $A \sim \mathfrak{p}$ by [8, (8), (11)], (35). \Box

5. Universal Property of Ring of Fractions

From now on f denotes a function from A into B. Now we state the proposition:

(37) Let us consider an element s of S. Suppose f inherits ring homomorphism and $f^{\circ}S \subseteq \text{UnitSet}(B)$. Then f(s) is a unit of B.

Let us consider A, B, S, and f. Assume f inherits ring homomorphism and $f^{\circ}S \subseteq \text{UnitSet}(B)$. The functor UnivMap(S, f) yielding a function from $S \sim A$ into B is defined by

(Def. 23) for every object x such that $x \in$ the carrier of $S \sim A$ there exist elements a, s of A such that $s \in S$ and $x = [\langle a, s \rangle]_{EqRel(S)}$ and $it(x) = f(a) \cdot (f(s)^{-1})$.

Now we state the propositions:

- (38) If f inherits ring homomorphism and $f^{\circ}S \subseteq \text{UnitSet}(B)$, then UnivMap(S, f) is additive. PROOF: For every elements x, y of $S \sim A$, (UnivMap(S, f))(x + y) = (UnivMap(S, f))(x) + (UnivMap(S, f))(y). \Box
- (39) If f inherits ring homomorphism and $f^{\circ}S \subseteq \text{UnitSet}(B)$, then UnivMap(S, f) is multiplicative. PROOF: For every elements x, y of $S \sim A$, $(\text{UnivMap}(S, f))(x \cdot y) = (\text{UnivMap}(S, f))(x) \cdot (\text{UnivMap}(S, f))(y)$. \Box

- (40) If f inherits ring homomorphism and $f^{\circ}S \subseteq \text{UnitSet}(B)$, then UnivMap(S, f) is unity-preserving. PROOF: $(\text{UnivMap}(S, f))(1_{S \sim A}) = 1_B$. \Box
- (41) If f inherits ring homomorphism and $f^{\circ}S \subseteq \text{UnitSet}(B)$, then UnivMap(S, f) inherits ring homomorphism.
- (42) Suppose f inherits ring homomorphism and $f^{\circ}S \subseteq \text{UnitSet}(B)$. Then $f = (\text{UnivMap}(S, f)) \cdot (\text{the canonical homomorphism of } S \text{ into quotient field}).$

PROOF: Set $g_1 = (\text{UnivMap}(S, f)) \cdot (\text{the canonical homomorphism of } S \text{ into quotient field})$. For every object x such that $x \in \text{dom } f$ holds $f(x) = g_1(x)$ by (19), (37), [5, (8)]. \Box

6. The Total-Quotient Ring and the Quotient Field of Integral Domain

Let us consider A. The functor TotalQuotRing(A) yielding a ring is defined by the term

(Def. 24) NonZeroDivSet(A) $\sim A$.

Observe that TotalQuotRing(A) is non degenerated.

In the sequel x denotes an object.

Now we state the proposition:

(43) If A is a field, then Ideals $A = \{\{0_A\}, \text{the carrier of } A\}$. PROOF: If $x \in \text{Ideals } A$, then $x \in \{\{0_A\}, \text{the carrier of } A\}$. If $x \in \{\{0_A\}, \text{the carrier of } A\}$, then $x \in \text{Ideals } A$. \Box

From now on A denotes an integral domain.

- (44) (i) NonZeroDivSet(A) = $\Omega_A \setminus \{0_A\}$, and
 - (ii) NonZeroDivSet(A) is a without zero, non empty, multiplicatively closed subset of A.

The theorem is a consequence of (4).

- (45) Let us consider an element a of A. Then $a \in \text{NonZeroDivSet}(A)$ if and only if $a \neq 0_A$. The theorem is a consequence of (44).
- (46) TotalQuotRing(A) is a field. The theorem is a consequence of (4), (30), and (19).
- (47) Let us consider an integral domain A. Then the field of quotients of A is ring isomorphic to TotalQuotRing(A). PROOF: Set S = NonZeroDivSet(A). Set B = the field of quotients of A. Set f = the canonical homomorphism of A into quotient field. $f^{\circ}S \subseteq$ UnitSet(B). Reconsider S = NonZeroDivSet(A) as a without zero, non

empty, multiplicatively closed subset of A. UnivMap(S, f) inherits ring homomorphism. TotalQuotRing(A) is a field. Set g = UnivMap(S, f). For every object y such that $y \in \Omega_B$ holds $y \in \text{rng } g$. \Box

References

- [1] Michael Francis Atiyah and Ian Grant Macdonald. Introduction to Commutative Algebra, volume 2. Addison-Wesley Reading, 1969.
- [2] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized Mathematics, 9(3):565–582, 2001.
- [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [5] Artur Korniłowicz and Christoph Schwarzweller. The first isomorphism theorem and other properties of rings. *Formalized Mathematics*, 22(4):291–301, 2014. doi:10.2478/forma-2014-0029.
- [6] Hideyuki Matsumura. Commutative Ring Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2nd edition, 1989.
- [7] Christoph Schwarzweller. The field of quotients over an integral domain. Formalized Mathematics, 7(1):69–79, 1998.
- [8] Yasushige Watase. Zariski topology. Formalized Mathematics, 26(4):277–283, 2018. doi:10.2478/forma-2018-0024.

Accepted January 13, 2020