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Rings of Fractions and Localization

Yasushige Watase
Suginami-ku Matsunoki
3-21-6 Tokyo, Japan

Summary. This article formalized rings of fractions in the Mizar system
[B], [4]. A construction of the ring of fractions from an integral domain, namely
a quotient field was formalized in [7].

This article generalizes a construction of fractions to a ring which is commu-
tative and has zero divisor by means of a multiplicatively closed set, say S, by
known manner. Constructed ring of fraction is denoted by S~ R instead of S™*R
appeared in [I], [6]. As an important example we formalize a ring of fractions by
a particular multiplicatively closed set, namely R ~\ p, where p is a prime ideal
of R. The resulted local ring is denoted by R,. In our Mizar article it is coded
by R™p as a synonym.

This article contains also the formal proof of a universal property of a ring
of fractions, the total-quotient ring, a proof of the equivalence between the total-
quotient ring and the quotient field of an integral domain.
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1. PRELIMINARIES:
UNITS, ZERO DIVISORS AND MULTIPLICATIVELY-CLOSED SET

From now on R, R; denote commutative rings, A, B denote non degenerated,
commutative rings, o, 01, oo denote objects, r, r1, ro denote elements of R, a,
a1, az, b, by denote elements of A, f denotes a function from R into R;, and p
denotes an element of the spectrum of A.

Let R be a commutative ring and r be an element of R. We say that r is

zero-divisible if and only if
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(Def. 1) there exists an element r; of R such that r1 # Og and r -7y = Og.
Let A be a non degenerated, commutative ring. Let us observe that there
exists an element of A which is zero-divisible.
Let us consider A.
A zero-divisor of A is a zero-divisible element of A. Now we state the pro-
positions:
(1) 04 is a zero-divisor of A.
(2) 14 is not a zero-divisor of A.
Let us consider A. The functor ZeroDivSet(A) yielding a subset of A is
defined by the term
(Def. 2) {a, where a is an element of A : a is a zero-divisor of A}.
The functor NonZeroDivSet(A) yielding a subset of A is defined by the term
(Def. 3) Q4 \ (ZeroDivSet(A)).
Let us note that ZeroDivSet(A) is non empty and NonZeroDivSet(A) is non
empty.
Now we state the propositions:
(3) 04 ¢ NonZeroDivSet(A). The theorem is a consequence of (1).
(4) If Ais an integral domain, then {04} = ZeroDivSet(A). The theorem is
a consequence of (1).
(5) {1g} is multiplicatively closed.
Let us consider R. One can check that there exists a non empty subset of R
which is multiplicatively closed.
Let us consider A. Let V' be a subset of A. We say that V' is without zero if
and only if
(Def. 4) OA ¢ V.
Let us observe that there exists a non empty, multiplicatively closed subset
of A which is without zero.
Now we state the propositions:
(6) 4\ p is multiplicatively closed.
(7) Let us consider a proper ideal J of A. Then multClSet(J, a) is multipli-
catively closed.

Let us consider A. One can check that NonZeroDivSet(A) is multiplicatively
closed.

Let us consider R. The functor UnitSet(R) yielding a subset of R is defined
by the term

(Def. 5) {a, where a is an element of R : a is a unit of R}.

Let us observe that UnitSet(R) is non empty.
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Now we state the proposition:

(8) If r1 € UnitSet(R), then 7 is right mult-cancelable.
Proor: Consider r9 such that ro - r; = 1. For every elements u, v of R
such that w-r1 =v -7 holds u =v. O
Let us consider R. Let r be an element of R. Assume r € UnitSet(R). The
functor recip(r) yielding an element of R is defined by
(Def. 6) it-r =1g.
We introduce the notation r~
Let u, v be elements of R. The functor u/v yielding an element of R is
defined by the term

(Def. 7)  w - recip(u).
Let us consider a unit v of R and an element v of R. Now we state the

! as a synonym of recip(r).

propositions:
(9) If f inherits ring homomorphism, then f(u) is a unit of Ry and f(u)™ " =
Flu).
(10) If f inherits ring homomorphism, then f(v - (u™')) = f(v) - (f(u) ™).
The theorem is a consequence of (9).

2. EQUIVALENCE RELATION OF FRACTIONS

In the sequel S denotes a non empty, multiplicatively closed subset of R.
Let us consider R and S. The functor Frac(.S) yielding a subset of (the carrier
of R) x (the carrier of R) is defined by
(Def. 8) for every set z, x € it iff there exist elements a, b of R such that z = (a,
b) and b € S.
Now we state the proposition:
(11) Frac(S) =Qgr x S.
Let us consider R and S. Let us observe that Frac(S) is non empty.
The functor fracl(S) yielding a function from R into Frac(S) is defined by
(Def. 9) for every object o such that o € the carrier of R holds it(o) = (o, 1R).
From now on u, v, w, z, y, z denote elements of Frac(.S).
Let us consider R and S. Let u, v be elements of Frac(S). The functor
FracAdd(u,v) yielding an element of Frac(S) is defined by the term
(Def. 10)  ((u)1 - ()2 + ()1 - (w)2, (u)2 - (v)2)-
One can verify that the functor is commutative.
The functor FracMult(u, v) yielding an element of Frac(S) is defined by the
term
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(Def. 11) - ((w)1 - (v)1, (u)2 - (v)2).
One can check that the functor is commutative.
Let us consider z and y. The functors: z + y and z - y yielding elements of
Frac(S) are defined by terms

(Def. 12) FracAdd(z,y),
(Def. 13) FracMult(z, y),
respectively. Now we state the propositions:
(12) FracAdd(z,FracAdd(y, z)) = FracAdd(FracAdd(z, y), 2).
(13) FracMult(z, FracMult(y, z)) = FracMult(FracMult(z, y), 2).
Let us consider R and S. Let z, y be elements of Frac(S). We say that
T =prg y if and only if
(Def. 14) there exists an element s; of R such that s; € S and ((z)1-((y)2) — (y)1-
((#)2)) - 51 = Or.
Now we state the propositions:
(14) IfOr € S, then & =g, y.
(15) z =prq .
(16) If v =pyq y, then y =p, .
(17) Ifx =pyq y and y =prg 2, then & =g, 2.

Let us consider R and S. The functor EqRel(S) yielding an equivalence
relation of Frac(.S) is defined by

(Def. 15)  (u, v) € it iff u =prg v.
Now we state the propositions:
(18) @ € [ylpqrals) if and only if 2 =g, y.

(19) [m]EqRel(S) = [y]EqRel(S) if and only if x =p,g v.
PROOF: Set £ = EqRel(S)' If [x]E = [y]E7 then x =Frg Y- T € [y]E g

(20) If v =pyq u and y =py4 v, then FracMult(z,y) =p,, FracMult(u, v).
(21) If x =pyq uw and y =py4 v, then FracAdd(z,y) =pr FracAdd(u,v).
(22) (x+4vy)-z2=prgz-2+Yy-2.
Let us consider R and S. The functors: 03, and I *® yielding elements of
Frac(S) are defined by terms

(Def. 16)  (Or, 1g),
(Def. 17)  (1r, 1g),
respectively. Now we state the proposition:

(23) Let us consider an element s of S. If x = (s, s), then z =p, ngs.



RINGS OF FRACTIONS AND LOCALIZATION
3. CONSTRUCTION OF RING OF FRACTIONS

Let us consider R and S. The functor FracRing(S) yielding a strict double
loop structure is defined by

(Def. 18) the carrier of it = Classes EqRel(S) and 1, = [I}%XS]EqRel

[O%XS]EqRel(S) and for every elements x, y of it, there exist elements a, b

(S) and Oit =

of Frac(S) such that z = [a]greys) and ¥ = [blggre(s) and (the addition
of it)(z,y) = [a + blpqrars) and for every elements z, y of it, there exist
elements a, b of Frac(S) such that « = [a]gqres) and ¥ = [blggrey(s) and
(the multiplication of it)(z,y) = [a - b]gqrel(s)-
We introduce the notation S~R as a synonym of FracRing(.5).
One can verify that S~R is non empty.
Now we state the proposition:
(24) Og € S if and only if S~R is degenerated. The theorem is a consequence
of (19).
In the sequel a, b, ¢ denote elements of Frac(S) and z, y, z denote elements
of S~R.
Now we state the propositions:
(25) There exists an element a of Frac(S) such that x = [a]gge(s)-
(26) If 2 = [alpqreas) and ¥ = [Blggres), then -y = [a- blpqpes)- The
theorem is a consequence of (19) and (20).
(27) x -y =1y -z. The theorem is a consequence of (25) and (26).
(28) If z = [a]pqrey(sy and ¥ = [Blpqrei(s): then = +y = [a + blggges)- The
theorem is a consequence of (19) and (21).
(29) S~Ris a ring.
PrROOF: z +y =y+z (v+y)+z=2+ (y+2). 2+ 05.r = z. = is
right complementable. (x 4+ y)-z=xz-z24+y-z. z-(y+2)=x-y+x-z
and (y+z2)- e =y-z+z-x. (x-y)-z=z-(y-2). x-(lgor) = x and
lgop-z=a.0
Let us consider R and S. One can verify that S~R is commutative, Abelian,
add-associative, right zeroed, right complementable, associative, well unital, and
distributive.
Now we state the proposition:

(30) There exist elements 71, 2 of R such that
(i) ro € S, and

(ii) z = [{r1, r2))pqreis)-

The theorem is a consequence of (25).
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In the sequel S denotes a without zero, non empty, multiplicatively closed
subset of A.

Let us consider A and S. The canonical homomorphism of S into quotient
field yielding a function from A into S~A is defined by

(Def. 19) for every object o such that o € the carrier of A holds it(o) =
(frac1 () (0)]qercs)-

Let us observe that the canonical homomorphism of S into quotient field is
additive, multiplicative, and unity-preserving.

Now we state the propositions:

(31) Let us consider elements a, b of A. Then (the canonical homomorphism
of S into quotient field)(a — b) = (the canonical homomorphism of S
into quotient field)(a) — (the canonical homomorphism of S into quotient
field)(b).

(32) Suppose 04 ¢ S. Then kerthe canonical homomorphism of S into
quotient field C ZeroDivSet(A).

PROOF: For every o such that o € ker the canonical homomorphism of S
into quotient field holds o € ZeroDivSet(A). O
(33) Suppose 04 ¢ S and A is an integral domain. Then
(i) kerthe canonical homomorphism of S into quotient field = {04}, and
(ii) the canonical homomorphism of S into quotient field is one-to-one.

PROOF: ker the canonical homomorphism of S into quotient field C ZeroDiv
Set(A). ZeroDivSet(A) = {04}. For every objects x, y such that x, y €
dom(the canonical homomorphism of S into quotient field) and (the canoni-
cal homomorphism of S into quotient field)(x) = (the canonical homomor-
phism of S into quotient field)(y) holds x = y. O

4. LOCALIZATION IN TERMS OF PRIME IDEALS

From now on p denotes an element of the spectrum of A.
Let us consider A and p. The functor Loc(A,p) yielding a subset of A is
defined by the term
(Def. 20) Q4 \ p.
One can check that Loc(A, p) is non empty and Loc(A, p) is multiplicatively
closed and Loc(A,p) is without zero.
The functor A~p yielding a ring is defined by the term
(Def. 21) Loc(A,p)~A.
One can verify that A~p is non degenerated and A~p is commutative.
The functor Locldeal(p) yielding a subset of Q4. is defined by the term
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(Def. 22) {y, where y is an element of A~p : there exists an element a of
Frac(Loc(A, p)) such that a € p x Loc(A, p) and y = [alpqrei(roc(4,p)) -
Observe that Locldeal(p) is non empty.
In the sequel a, m, n denote elements of A~p.
Now we state the propositions:
(34) Locldeal(p) is a proper ideal of A~p.
PROOF: Reconsider M = Locldeal(p) as a subset of A~p. For every ele-
ments m, n of A~p such that m, n € M holds m + n € M. For every
elements x, m of A~p such that m € M holds x-m € M. M is proper by
[2, (19)], (19). O
(35) Let us consider an object x. Suppose x € Qa~p \ (Locldeal(p)). Then x
is a unit of A~p. The theorem is a consequence of (25) and (11).
(36) (i) A~p is local, and
(ii) Locldeal(p) is a maximal ideal of A~p.
PROOF: Reconsider J = Locldeal(p) as a proper ideal of A~p. A~p is
local. J is a maximal ideal of A~p by [8, (8), (11)], (35). O

5. UNIVERSAL PROPERTY OF RING OF FRACTIONS

From now on f denotes a function from A into B.

Now we state the proposition:

(37) Let us consider an element s of S. Suppose f inherits ring homomorphism
and f°S C UnitSet(B). Then f(s) is a unit of B.

Let us consider A, B, S, and f. Assume f inherits ring homomorphism and
f°S C UnitSet(B). The functor UnivMap(S, f) yielding a function from S~A
into B is defined by

(Def. 23) for every object x such that x € the carrier of S~A there exist elements
a, s of A such that s € S and = = [{a, 5)|pqrey(s) and it(z) = f(a) -
(f()™h).

Now we state the propositions:

(38) If f inherits ring homomorphism and f°S C UnitSet(B),
then UnivMap(S, f) is additive.
PROOF: For every elements z, y of S~A, (UnivMap(S, f))(x +y) =
(UnivMap(S, f))(z) + (UnivMap(S, f))(y). O

(39) If f inherits ring homomorphism and f°S C UnitSet(B),
then UnivMap(S, f) is multiplicative.
PROOF: For every elements z, y of S~A, (UnivMap(S, f))(z -y) =
(UnivMap(S, f))(z) - (UnivMap(S, f))(y). O
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(40) If f inherits ring homomorphism and f°S C UnitSet(B),
then UnivMap(S, f) is unity-preserving.
PRrOOF: (UnivMap(S, f))(1g~a) =15. O

(41) If f inherits ring homomorphism and f°S C UnitSet(B),
then UnivMap(S, f) inherits ring homomorphism.

(42) Suppose f inherits ring homomorphism and f°S C UnitSet(B). Then
f = (UnivMap(S, f)) - (the canonical homomorphism of S into quotient
field).

PRrROOF: Set g1 = (UnivMap(S, f)) - (the canonical homomorphism of
S into quotient field). For every object z such that x € dom f holds
7(x) = g1(x) by (19), (37), B 8)). O

6. THE TOTAL-QUOTIENT RING
AND THE QUOTIENT FIELD OF INTEGRAL DOMAIN

Let us consider A. The functor TotalQuotRing(A) yielding a ring is defined
by the term

(Def. 24) NonZeroDivSet(A)~A.

Observe that TotalQuotRing(A) is non degenerated.
In the sequel z denotes an object.
Now we state the proposition:
(43) If Ais a field, then Ideals A = {{04}, the carrier of A}.
PRrROOF: If = € Ideals A, then = € {{04}, the carrier of A}.
If x € {{04}, the carrier of A}, then x € Ideals A. O
From now on A denotes an integral domain.
(44) (i) NonZeroDivSet(A) = Q4 \ {04}, and

(ii) NonZeroDivSet(A) is a without zero, non empty, multiplicatively
closed subset of A.
The theorem is a consequence of (4).

(45) Let us consider an element a of A. Then a € NonZeroDivSet(A) if and
only if a # 04. The theorem is a consequence of (44).

(46) TotalQuotRing(A) is a field. The theorem is a consequence of (4), (30),
and (19).

(47) Let us consider an integral domain A. Then the field of quotients of A
is ring isomorphic to TotalQuotRing(A).
PROOF: Set S = NonZeroDivSet(A). Set B = the field of quotients of
A. Set f = the canonical homomorphism of A into quotient field. f°S C
UnitSet(B). Reconsider S = NonZeroDivSet(A) as a without zero, non
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empty, multiplicatively closed subset of A. UnivMap(S, f) inherits ring
homomorphism. TotalQuotRing(A) is a field. Set g = UnivMap(S, f). For
every object y such that y € Qp holds y € rngg. [J
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