
FORMALIZED MATHEMATICS

Vol. 28, No. 1, Pages 79–87, 2020
DOI: 10.2478/forma-2020-0006 https://www.sciendo.com/

Rings of Fractions and Localization
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Summary. This article formalized rings of fractions in the Mizar system
[3], [4]. A construction of the ring of fractions from an integral domain, namely
a quotient field was formalized in [7].

This article generalizes a construction of fractions to a ring which is commu-
tative and has zero divisor by means of a multiplicatively closed set, say S, by
known manner. Constructed ring of fraction is denoted by S˜R instead of S−1R
appeared in [1], [6]. As an important example we formalize a ring of fractions by
a particular multiplicatively closed set, namely R r p, where p is a prime ideal
of R. The resulted local ring is denoted by Rp. In our Mizar article it is coded
by R˜p as a synonym.

This article contains also the formal proof of a universal property of a ring
of fractions, the total-quotient ring, a proof of the equivalence between the total-
quotient ring and the quotient field of an integral domain.
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1. Preliminaries:
Units, Zero Divisors and Multiplicatively-closed Set

From now on R, R1 denote commutative rings, A, B denote non degenerated,
commutative rings, o, o1, o2 denote objects, r, r1, r2 denote elements of R, a,
a1, a2, b, b1 denote elements of A, f denotes a function from R into R1, and p

denotes an element of the spectrum of A.
Let R be a commutative ring and r be an element of R. We say that r is

zero-divisible if and only if
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(Def. 1) there exists an element r1 of R such that r1 6= 0R and r · r1 = 0R.

Let A be a non degenerated, commutative ring. Let us observe that there
exists an element of A which is zero-divisible.

Let us consider A.
A zero-divisor of A is a zero-divisible element of A. Now we state the pro-

positions:

(1) 0A is a zero-divisor of A.

(2) 1A is not a zero-divisor of A.

Let us consider A. The functor ZeroDivSet(A) yielding a subset of A is
defined by the term

(Def. 2) {a, where a is an element of A : a is a zero-divisor of A}.

The functor NonZeroDivSet(A) yielding a subset of A is defined by the term

(Def. 3) ΩA \ (ZeroDivSet(A)).

Let us note that ZeroDivSet(A) is non empty and NonZeroDivSet(A) is non
empty.

Now we state the propositions:

(3) 0A /∈ NonZeroDivSet(A). The theorem is a consequence of (1).

(4) If A is an integral domain, then {0A} = ZeroDivSet(A). The theorem is
a consequence of (1).

(5) {1R} is multiplicatively closed.

Let us consider R. One can check that there exists a non empty subset of R
which is multiplicatively closed.

Let us consider A. Let V be a subset of A. We say that V is without zero if
and only if

(Def. 4) 0A /∈ V .

Let us observe that there exists a non empty, multiplicatively closed subset
of A which is without zero.

Now we state the propositions:

(6) ΩA \ p is multiplicatively closed.

(7) Let us consider a proper ideal J of A. Then multClSet(J, a) is multipli-
catively closed.

Let us consider A. One can check that NonZeroDivSet(A) is multiplicatively
closed.

Let us consider R. The functor UnitSet(R) yielding a subset of R is defined
by the term

(Def. 5) {a, where a is an element of R : a is a unit of R}.

Let us observe that UnitSet(R) is non empty.
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Now we state the proposition:

(8) If r1 ∈ UnitSet(R), then r1 is right mult-cancelable.
Proof: Consider r2 such that r2 · r1 = 1R. For every elements u, v of R
such that u · r1 = v · r1 holds u = v. �

Let us consider R. Let r be an element of R. Assume r ∈ UnitSet(R). The
functor recip(r) yielding an element of R is defined by

(Def. 6) it · r = 1R.

We introduce the notation r−1 as a synonym of recip(r).
Let u, v be elements of R. The functor u/v yielding an element of R is

defined by the term

(Def. 7) u · recip(u).

Let us consider a unit u of R and an element v of R. Now we state the
propositions:

(9) If f inherits ring homomorphism, then f(u) is a unit of R1 and f(u)−1 =
f(u−1).

(10) If f inherits ring homomorphism, then f(v · (u−1)) = f(v) · (f(u)−1).
The theorem is a consequence of (9).

2. Equivalence Relation of Fractions

In the sequel S denotes a non empty, multiplicatively closed subset of R.
Let us considerR and S. The functor Frac(S) yielding a subset of (the carrier

of R)× (the carrier of R) is defined by

(Def. 8) for every set x, x ∈ it iff there exist elements a, b of R such that x = 〈〈a,
b〉〉 and b ∈ S.

Now we state the proposition:

(11) Frac(S) = ΩR × S.

Let us consider R and S. Let us observe that Frac(S) is non empty.
The functor frac1(S) yielding a function from R into Frac(S) is defined by

(Def. 9) for every object o such that o ∈ the carrier of R holds it(o) = 〈〈o, 1R〉〉.
From now on u, v, w, x, y, z denote elements of Frac(S).
Let us consider R and S. Let u, v be elements of Frac(S). The functor

FracAdd(u, v) yielding an element of Frac(S) is defined by the term

(Def. 10) 〈〈(u)1 · (v)2 + (v)1 · (u)2, (u)2 · (v)2〉〉.
One can verify that the functor is commutative.

The functor FracMult(u, v) yielding an element of Frac(S) is defined by the
term
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(Def. 11) 〈〈(u)1 · (v)1, (u)2 · (v)2〉〉.
One can check that the functor is commutative.

Let us consider x and y. The functors: x + y and x · y yielding elements of
Frac(S) are defined by terms

(Def. 12) FracAdd(x, y),

(Def. 13) FracMult(x, y),

respectively. Now we state the propositions:

(12) FracAdd(x,FracAdd(y, z)) = FracAdd(FracAdd(x, y), z).

(13) FracMult(x,FracMult(y, z)) = FracMult(FracMult(x, y), z).

Let us consider R and S. Let x, y be elements of Frac(S). We say that
x =FrS y if and only if

(Def. 14) there exists an element s1 of R such that s1 ∈ S and ((x)1 ·((y)2)−(y)1 ·
((x)2)) · s1 = 0R.

Now we state the propositions:

(14) If 0R ∈ S, then x =FrS y.

(15) x =FrS x.

(16) If x =FrS y, then y =FrS x.

(17) If x =FrS y and y =FrS z, then x =FrS z.

Let us consider R and S. The functor EqRel(S) yielding an equivalence
relation of Frac(S) is defined by

(Def. 15) 〈〈u, v〉〉 ∈ it iff u =FrS v.

Now we state the propositions:

(18) x ∈ [y]EqRel(S) if and only if x =FrS y.

(19) [x]EqRel(S) = [y]EqRel(S) if and only if x =FrS y.
Proof: Set E = EqRel(S). If [x]E = [y]E , then x =FrS y. x ∈ [y]E . �

(20) If x =FrS u and y =FrS v, then FracMult(x, y) =FrS FracMult(u, v).

(21) If x =FrS u and y =FrS v, then FracAdd(x, y) =FrS FracAdd(u, v).

(22) (x+ y) · z =FrS x · z + y · z.
Let us consider R and S. The functors: 0S×SR and IS×SR yielding elements of

Frac(S) are defined by terms

(Def. 16) 〈〈0R, 1R〉〉,
(Def. 17) 〈〈1R, 1R〉〉,

respectively. Now we state the proposition:

(23) Let us consider an element s of S. If x = 〈〈s, s〉〉, then x =FrS I
S×S
R .
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3. Construction of Ring of Fractions

Let us consider R and S. The functor FracRing(S) yielding a strict double
loop structure is defined by

(Def. 18) the carrier of it = Classes EqRel(S) and 1it = [IS×SR ]EqRel(S) and 0it =

[0S×SR ]EqRel(S) and for every elements x, y of it, there exist elements a, b
of Frac(S) such that x = [a]EqRel(S) and y = [b]EqRel(S) and (the addition
of it)(x, y) = [a+ b]EqRel(S) and for every elements x, y of it, there exist
elements a, b of Frac(S) such that x = [a]EqRel(S) and y = [b]EqRel(S) and
(the multiplication of it)(x, y) = [a · b]EqRel(S).

We introduce the notation S∼R as a synonym of FracRing(S).
One can verify that S∼R is non empty.
Now we state the proposition:

(24) 0R ∈ S if and only if S∼R is degenerated. The theorem is a consequence
of (19).

In the sequel a, b, c denote elements of Frac(S) and x, y, z denote elements
of S∼R.

Now we state the propositions:

(25) There exists an element a of Frac(S) such that x = [a]EqRel(S).

(26) If x = [a]EqRel(S) and y = [b]EqRel(S), then x · y = [a · b]EqRel(S). The
theorem is a consequence of (19) and (20).

(27) x · y = y · x. The theorem is a consequence of (25) and (26).

(28) If x = [a]EqRel(S) and y = [b]EqRel(S), then x + y = [a+ b]EqRel(S). The
theorem is a consequence of (19) and (21).

(29) S∼R is a ring.
Proof: x + y = y + x. (x + y) + z = x + (y + z). x + 0S∼R = x. x is
right complementable. (x + y) · z = x · z + y · z. x · (y + z) = x · y + x · z
and (y + z) · x = y · x + z · x. (x · y) · z = x · (y · z). x · (1S∼R) = x and
1S∼R · x = x. �

Let us consider R and S. One can verify that S∼R is commutative, Abelian,
add-associative, right zeroed, right complementable, associative, well unital, and
distributive.

Now we state the proposition:

(30) There exist elements r1, r2 of R such that

(i) r2 ∈ S, and

(ii) z = [〈〈r1, r2〉〉]EqRel(S).

The theorem is a consequence of (25).
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In the sequel S denotes a without zero, non empty, multiplicatively closed
subset of A.

Let us consider A and S. The canonical homomorphism of S into quotient
field yielding a function from A into S∼A is defined by

(Def. 19) for every object o such that o ∈ the carrier of A holds it(o) =
[(frac1(S))(o)]EqRel(S).

Let us observe that the canonical homomorphism of S into quotient field is
additive, multiplicative, and unity-preserving.

Now we state the propositions:

(31) Let us consider elements a, b of A. Then (the canonical homomorphism
of S into quotient field)(a − b) = (the canonical homomorphism of S
into quotient field)(a)− (the canonical homomorphism of S into quotient
field)(b).

(32) Suppose 0A /∈ S. Then ker the canonical homomorphism of S into
quotient field ⊆ ZeroDivSet(A).
Proof: For every o such that o ∈ ker the canonical homomorphism of S
into quotient field holds o ∈ ZeroDivSet(A). �

(33) Suppose 0A /∈ S and A is an integral domain. Then

(i) ker the canonical homomorphism of S into quotient field = {0A}, and

(ii) the canonical homomorphism of S into quotient field is one-to-one.

Proof: ker the canonical homomorphism of S into quotient field ⊆ ZeroDiv
Set(A). ZeroDivSet(A) = {0A}. For every objects x, y such that x, y ∈
dom(the canonical homomorphism of S into quotient field) and (the canoni-
cal homomorphism of S into quotient field)(x) = (the canonical homomor-
phism of S into quotient field)(y) holds x = y. �

4. Localization in Terms of Prime Ideals

From now on p denotes an element of the spectrum of A.
Let us consider A and p. The functor Loc(A, p) yielding a subset of A is

defined by the term

(Def. 20) ΩA \ p.

One can check that Loc(A, p) is non empty and Loc(A, p) is multiplicatively
closed and Loc(A, p) is without zero.

The functor A∼p yielding a ring is defined by the term

(Def. 21) Loc(A, p)∼A.

One can verify that A∼p is non degenerated and A∼p is commutative.
The functor LocIdeal(p) yielding a subset of ΩA∼p is defined by the term
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(Def. 22) {y, where y is an element of A∼p : there exists an element a of
Frac(Loc(A, p)) such that a ∈ p× Loc(A, p) and y = [a]EqRel(Loc(A,p))}.

Observe that LocIdeal(p) is non empty.
In the sequel a, m, n denote elements of A∼p.
Now we state the propositions:

(34) LocIdeal(p) is a proper ideal of A∼p.
Proof: Reconsider M = LocIdeal(p) as a subset of A∼p. For every ele-
ments m, n of A∼p such that m, n ∈ M holds m + n ∈ M . For every
elements x, m of A∼p such that m ∈M holds x ·m ∈M . M is proper by
[2, (19)], (19). �

(35) Let us consider an object x. Suppose x ∈ ΩA∼p \ (LocIdeal(p)). Then x
is a unit of A∼p. The theorem is a consequence of (25) and (11).

(36) (i) A∼p is local, and

(ii) LocIdeal(p) is a maximal ideal of A∼p.
Proof: Reconsider J = LocIdeal(p) as a proper ideal of A∼p. A∼p is
local. J is a maximal ideal of A∼p by [8, (8), (11)], (35). �

5. Universal Property of Ring of Fractions

From now on f denotes a function from A into B.
Now we state the proposition:

(37) Let us consider an element s of S. Suppose f inherits ring homomorphism
and f◦S ⊆ UnitSet(B). Then f(s) is a unit of B.

Let us consider A, B, S, and f . Assume f inherits ring homomorphism and
f◦S ⊆ UnitSet(B). The functor UnivMap(S, f) yielding a function from S∼A
into B is defined by

(Def. 23) for every object x such that x ∈ the carrier of S∼A there exist elements
a, s of A such that s ∈ S and x = [〈〈a, s〉〉]EqRel(S) and it(x) = f(a) ·
(f(s)−1).

Now we state the propositions:

(38) If f inherits ring homomorphism and f◦S ⊆ UnitSet(B),
then UnivMap(S, f) is additive.
Proof: For every elements x, y of S∼A, (UnivMap(S, f))(x+ y) =
(UnivMap(S, f))(x) + (UnivMap(S, f))(y). �

(39) If f inherits ring homomorphism and f◦S ⊆ UnitSet(B),
then UnivMap(S, f) is multiplicative.
Proof: For every elements x, y of S∼A, (UnivMap(S, f))(x · y) =
(UnivMap(S, f))(x) · (UnivMap(S, f))(y). �
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(40) If f inherits ring homomorphism and f◦S ⊆ UnitSet(B),
then UnivMap(S, f) is unity-preserving.
Proof: (UnivMap(S, f))(1S∼A) = 1B. �

(41) If f inherits ring homomorphism and f◦S ⊆ UnitSet(B),
then UnivMap(S, f) inherits ring homomorphism.

(42) Suppose f inherits ring homomorphism and f◦S ⊆ UnitSet(B). Then
f = (UnivMap(S, f)) · (the canonical homomorphism of S into quotient
field).
Proof: Set g1 = (UnivMap(S, f)) · (the canonical homomorphism of
S into quotient field). For every object x such that x ∈ dom f holds
f(x) = g1(x) by (19), (37), [5, (8)]. �

6. The Total-Quotient Ring
and the Quotient Field of Integral Domain

Let us consider A. The functor TotalQuotRing(A) yielding a ring is defined
by the term

(Def. 24) NonZeroDivSet(A)∼A.

Observe that TotalQuotRing(A) is non degenerated.
In the sequel x denotes an object.
Now we state the proposition:

(43) If A is a field, then IdealsA = {{0A}, the carrier of A}.
Proof: If x ∈ IdealsA, then x ∈ {{0A}, the carrier of A}.
If x ∈ {{0A}, the carrier of A}, then x ∈ IdealsA. �

From now on A denotes an integral domain.

(44) (i) NonZeroDivSet(A) = ΩA \ {0A}, and

(ii) NonZeroDivSet(A) is a without zero, non empty, multiplicatively
closed subset of A.

The theorem is a consequence of (4).

(45) Let us consider an element a of A. Then a ∈ NonZeroDivSet(A) if and
only if a 6= 0A. The theorem is a consequence of (44).

(46) TotalQuotRing(A) is a field. The theorem is a consequence of (4), (30),
and (19).

(47) Let us consider an integral domain A. Then the field of quotients of A
is ring isomorphic to TotalQuotRing(A).
Proof: Set S = NonZeroDivSet(A). Set B = the field of quotients of
A. Set f = the canonical homomorphism of A into quotient field. f◦S ⊆
UnitSet(B). Reconsider S = NonZeroDivSet(A) as a without zero, non
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empty, multiplicatively closed subset of A. UnivMap(S, f) inherits ring
homomorphism. TotalQuotRing(A) is a field. Set g = UnivMap(S, f). For
every object y such that y ∈ ΩB holds y ∈ rng g. �
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