REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/17364
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorLach, Agnieszka-
dc.date.accessioned2024-10-16T11:06:47Z-
dc.date.available2024-10-16T11:06:47Z-
dc.date.issued2024-
dc.identifier.citationOptimum. Economic Studies, Nr 3(117) 2024, s. 60-78pl
dc.identifier.issn1506-7637-
dc.identifier.urihttp://hdl.handle.net/11320/17364-
dc.description.abstractPurpose – The paper regards the goodness-of-fit (GOF) tests for doubly truncated continuous data with known truncation points. The first goal of the paper is to derive computing formulas of several test statistics for doubly truncated data, when the number of truncated data is unknown. The second goal is to develop statistical inference procedure based on the derived formulas, which includes information regarding the number of truncated data, when it is available. Research method – The formulas and the inference procedure are developed with the use of the methods proposed by Chernobai, Rachev and Fabozzi [2015], who already developed GOF tests for the left truncated data, when the number of truncated data is unknown. Results – Several tests are developed in case of double truncation. Depending on the chosen truncation points, the tests for left, right or doubly truncated samples might be obtained. When no truncation occurs, the tests are reduced to the complete sample tests. The quality of the tests is assessed on the basis of the FTSE100 return distributions. Originality / value / implications / recommendations – To the best knowledge of the author, computing formulas of the GOF test statistics for doubly truncated distributions with known truncation points, when the number of truncated data is unknown, have not been presented in the literature yet.pl
dc.language.isoenpl
dc.publisherWydawnictwo Uniwersytetu w Białymstokupl
dc.subjectgoodness-of-fitpl
dc.subjectreturn distributionpl
dc.subjecttruncated distributionpl
dc.titleGoodness-Of-Fit Tests for Doubly Truncated Datapl
dc.typeArticlepl
dc.rights.holder© Copyright by Uniwersytet w Białymstokupl
dc.identifier.doi10.15290/oes.2024.03.117.04-
dc.description.EmailAgnieszka.Lach@ue.poznan.plpl
dc.description.AffiliationPoznań University of Economics and Businesspl
dc.description.referencesAhmad M. I., Sinclair C.D., Spurr B.D., 1988, Assessment of Flood Frequency Models Using Empirical Distribution Function Statistics, “Water Resources Research”, Vol. 24(8), pp. 1323–1328, DOI: 10.1029/WR024i008p01323.pl
dc.description.referencesAyebo A., Kozubowski T.J., 2003, An Asymmetric Generalization of Gaussian and Laplace Laws, “Journal of Probability and Statistical Science”, Vol. 1(2), pp. 187–210.pl
dc.description.referencesBarr D.R., Davidson T., 1973, A Kolmogorov-Smirnov Test for Censored Samples, “Technometrics”, Vol. 15(4), pp. 739–757.pl
dc.description.referencesChernobai A., Rachev S., Fabozzi F., 2015, Composite Goodness-Of-Fit Tests for Left Truncated Loss Samples, [in:] Handbook of Financial Econometrics and Statistics, Lee C., Lee J. (eds), Springer, New York.pl
dc.description.referencesCont R., 2001, Empirical Properties of Asset Returns: Stylized Facts and Statistical Issues, “Quantitative Finance”, Vol. 1, pp. 223–236, DOI: 10.1080/713665670.pl
dc.description.referencesDufour R., Maag U.R., 1978, Distribution Results for Modified Kolmogorov–Smirnov Statistics for Truncated or Censored Samples, “Technometrics”, Vol. 20(1), pp. 29–32, DOI: 10.1080/00401706.1978.10489613.pl
dc.description.referencesEchaust K., Lach A., 2017, Goodness-Of-Fit Tests for Truncated Distributions, “35th International Conference on Mathematical Methods in Economics: Conference Proceedings”.pl
dc.description.referencesLach A., Smaga Ł., 2018, Comparison of the Goodness-Of-Fit Tests for Truncated Distributions, “Przegląd Statystyczny”, Vol. 65(3), pp. 296–313, DOI: 10.5604/01.3001.0014.0541.pl
dc.description.referencesMartinez W.L., Martinez A.R., 2008, Computational Statistics Handbook with MATLAB, Chapman and Hall/CRC, New York.pl
dc.description.referencesPewsey A., 2018, Parametric Bootstrap Edf-based Goodness-Of-Fit Testing for Sinh-Arcsinh Distributions, “Test”, Vol. 27(1), pp. 147–172, DOI: 10.1007/s11749-017-0538-2.pl
dc.description.referencesPettitt A.N., Stephens M.A., 1976, Modified Cramér-von Mises Statistics for Censored Data, “Biometrika”, Vol. 63(2), pp. 291–298, DOI: 10.1093/biomet/63.2.291.pl
dc.description.referencesPrause K., 1999, The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures (unpublished doctoral dissertation), Universität Freiburg, Freiburg.pl
dc.description.referencesSinclair C.D., Spurr B.D., Ahmad M.I., 1987, Modified Anderson-Darling Test, “Communications in Statistics – Theory and Methods”, Vol. 19(10), pp. 3677–3686, DOI: 10.1080/03610929008830405.pl
dc.description.referencesStute W., Manteiga W.G., Quindimil M.P., 1993, Bootstrap Based Goodness-Of-Fit Tests, “Metrika”, Vol. 40(1), pp. 243–256, DOI: 10.1007/BF02613687.pl
dc.description.referencesTollenaar N., Mooijaart A., 2003, Type I Errors and Power of the Parametric Bootstrap Goodness-Of-Fit Test: Full and Limited Information, “British Journal of Mathematical & Statistical Psychology”, Vol. 56(2), pp. 271–288, DOI: 10.1348/000711003770480048.pl
dc.description.number3(117)pl
dc.description.firstpage60pl
dc.description.lastpage78pl
dc.identifier.citation2Optimum. Economic Studiespl
dc.identifier.orcid0000-0002-2831-6336-
Występuje w kolekcji(ach):Optimum. Economic Studies, 2024, nr 3(117)

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
Optimum_3_2024_A_Lach_Goodness_Of_Fit.pdf1,12 MBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja jest chroniona prawem autorskim (Copyright © Wszelkie prawa zastrzeżone)