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GOODNESS-OF-FIT TESTS FOR DOUBLY TRUNCATED DATA!

Summary

Purpose — The paper regards the goodness-of-fit (GOF) tests for doubly truncated
continuous data with known truncation points. The first goal of the paper is to derive com-
puting formulas of several test statistics for doubly truncated data, when the number of
truncated data is unknown. The second goal is to develop statistical inference procedure
based on the derived formulas, which includes information regarding the number of
truncated data, when it is available.

Research method — The formulas and the inference procedure are developed with the
use of the methods proposed by Chernobai, Rachev and Fabozzi [2015], who already
developed GOF tests for the left truncated data, when the number of truncated data is
unknown.

Results — Several tests are developed in case of double truncation. Depending on the
chosen truncation points, the tests for left, right or doubly truncated samples might be
obtained. When no truncation occurs, the tests are reduced to the complete sample tests.
The quality of the tests is assessed on the basis of the FTSE100 return distributions.

Originality/value/implications/recommendations — To the best knowledge of the author,
computing formulas of the GOF test statistics for doubly truncated distributions with
known truncation points, when the number of truncated data is unknown, have not been
presented in the literature yet.
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1. Introduction

The possible range of applications of doubly truncated data is wide, including
economics, medicine, astronomy and engineering. This article is about the good-
ness-of-fit (GOF) tests for doubly truncated continuous data with known trun-
cation points. The tests considered in this article are in particular the one-sample
tests and they are based on an empirical cumulative distribution function (CDEF).
The tests presented in this paper were developed with the use of the method pro-
posed by Chernobai, Rachev and Fabozzi [2015] and should be perceived as the
generalization of the left truncated GOF tests proposed there.

Referring to the literature, it is worth to distinguish two types of the GOF
tests for truncated data: when the number of truncated data is known and when
it is unknown. The GOF tests for truncated data, when the number of truncated
data is known, might be used to determine the goodness-of-fit in the certain
proportion of the random sample. Such modifications were already considered
in the literature for the Kolmogorov-Smirnov statistic [Barr, Davidson, 1973;
Dufour, Maag, 1978] and the statistics of Cramér-von Mises, Anderson-Darling
and Watson [Pettitt, Stephens, 1976]. The GOF tests for truncated data, when the
number of truncated data is unknown, were considered only for the left truncated
case [Chernobai, Rachev, Fabozzi, 2015]. In the aforementioned paper, one can
find exact formulas for the statistics of Kolmogorov-Smirnov, Kuiper, Cramér-von
Mises and Anderson-Darling. The Anderson-Darling statistic is presented there
in two versions (supremum and quadratic) and with two weighing functions (one
giving more importance to both tails and the other one giving more importance to
the upper tail of a distribution). Both of the above mentioned concepts have certain
limitations. In the first concept, when the number of truncated data is known,
the range of available statistics is confined and there are no statistics dedicated
to test the goodness-of-fit in the chosen tail of a distribution. The main disad-
vantage of the second approach, when the number of truncated data is unknown,
is the possibility to test the goodness-of-fit only in the left truncated distributions.
The mentioned constraints and the research carried out on the GOF tests for the
left truncated distributions [Echaust, Lach, 2017; Lach, Smaga, 2018] became
the inspiration for the doctoral dissertation, parts of which are presented in this
article. The intention of the research was to create a flexible tool to test the good-
ness-of-fit of any selected part of an unconditional distribution and to examine its
application values. The most important part of this research regarded the develop-
ment of the GOF test statistics for the doubly truncated data, when the number
of truncated data is unknown.
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The paper is organized as follows. Firstly, the complete sample GOF test statis-
tics, which are the subject of the modifications, are presented. Next, the modified
test statistics and the inference procedure for the doubly truncated samples are
introduced. The third section contains the data overview as well as the distribu-
tions used later in the study. In the next section, the simulations are conducted
to examine the finite sample performance of the tests. The last section contains
conclusions. The derivation of the chosen test statistic for the doubly truncated
case might be found in the Appendix 1.

2. Goodness-of-fit tests for complete samples

The test statistics for the complete distributions (Table 1), the modifications
of which are presented in this paper, are both Kolmogorov—Smirnov type and
Cramér—von Mises type. Following Chernobai, Rachev and Fabozzi [2015], the
first ones are also described as supremum, and the second ones as quadratic.

The Kolmogorov-Smirnov statistic is more sensitive in the central part of
the distribution. The Anderson—Darling statistic, depending on the weighing
function, provides more weight to both tails of the distribution, to the upper
tail [Sinclair, Spurr, Ahmad, 1987] or to the lower tail [Ahmad, Sinclair, Spurr,
1988].

TABLE 1
General formulas of the test statistics for the complete samples
Type Statistic General formula
Kolmogorov- K¢ — \/Zsu F(x)=F (x 1
Smirnov xP ”( ) 0( )| W

Kuiper VZJZ(Sgp{P; (x)—FO(X)}+Slip{E) (x)—El(x)}j

Supremum

Anderson- ADZ\/;sup Ez(x)_Fo(x) ‘ 3)

o SN ASIEAS)]

)
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Type Statistic General formula
Anderson-
- | E (x)-F
P ARG o
2 - 1=F(x) |
= upper tail
E Anderson-
e ba E ()~ F (x)
O e 5
lower tail * 0
e W =nl(E,(x)= £, (%)) dF, (x) ©
- (£, (x)=F(x)
Anderson
. dF, 7)
Darling 7’1,[ E x) 1 F( )) ( ) 7
g Anderson- 2
o Darling AD? :nj(}; (x)—E)(x)) AF (x) )
for the up 2 0
upper tail (I—E)(x))
Anderson- 2
Dari Fy(x))
anrrtlf:eg ADa’Zown = nJ. dF ( ) (9)
lower tail (x )

Symbols: £, (x) - the empirical cumulative distribution function (ECDF); F; (X) - the theoretical cumu-
lative distribution function; n - the sample size.

Source: the author's own elaboration on the basis of: [Chernobai, Rachev, Fabozzi, 2015: 586].

In the GOF testing, the null and alternative hypotheses are usually formulated
as: H, : F'e F,and H, : I ¢ F,. The theoretical distribution function /) might
depend on the parameters that are estimated from the sample, which is particularly
common when verifying hypotheses concerning financial markets. In such cases,
when hypotheses are composite, the distributions of the test statistics are usual-
ly unknown and must be approximated. Let’s assume, that X = (Xl,...,X” ),
denote an n-element sample of i.i.d. random variables with an unknown cumu-
lative distribution function F. A bootstrap algorithm for testing aforementioned

hypotheses might be as follows (Algorithm 1):
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1. For the n-element sample X = (Xl""’Xn ),:

1.1. Estimate the parameters 0 of E,.

1.2. Compute the test statistic 7.
2. Generate bootstrap samples from]*:('): X0 = (Xl(i),...,Xfli) ),wherez' =1,...,B.
3. For each bootstrap sample: XY = (Xl(i),...,X,(,i)) :

3.1. Estimate the parameters of 0 of F.

3.2. Compute the test statistic 7.

#H1<i<B:T,>T}+1

B+1
5. Reject the null hypothesis if the p-value is less than or equal to the nominal

4. Compute the p-value according to the formula: ]3 =

(10)

significance level a.

Goodness-of-fit tests for doubly truncated samples

This section presents modifications of the test statistics (1)—(9). Chernobai,
Rachev and Fabozzi [2015] had already derived the computational formulas
for the test statistics (1)—(4) and (6)—(8), when the sample is left truncated and
the number of truncated data is unknown. In this article, the computation-
al formulas for all the mentioned test statistics (1)—(9) are derived, when the
sample is doubly truncated and the number of truncated data is unknown. The
formulas were derived using the method adopted by Chernobai, Rachev and
Fabozzi [2015], therefore they should be considered as the generalization of
the left truncated data tests presented therein. The statistics were derived under
the assumptions that the truncation points and the sample size are not random
variables.

Firstly, from the doubly truncated perspective, the ECDF and the theoretical
CDF are defined. Next, the computing formulas for the test statistics (1)—(9), when
the sample is doubly truncated, are presented. Finally, the statistical inference pro-
cedure to test the GOF in case of double truncation is introduced. This procedure
includes the information regarding the number of truncated data, because it is
available in case of further analyzed financial data, i.e. the FTSE100 percentage
log-returns. The statistical inference procedure, when the number of truncated
data is unknown, has already been presented in the literature for the left-truncated
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case. This procedure, with slight changes, can also be applied with the statistics
for double-truncated distributions presented in this paper.

In the remainder of the article, the observations are denoted as x = (x1 yeen X, ),
and the ordered sample of observations as x;) < x,) <...<x,. The truncation
points are indicated as 1 and H2. The test statistics considered in this paper are
based on the ECDE The definition of the ECDF for a doubly truncated sample
is the same, as the ECDF for a complete sample and is defined as follows:

0 X < X1y
J .

Fn(x)z ; X)) Sx<x(j+l),] =12,...,n—1 (11)
1 xe(n).

To construct the test statistics, the definition of the theoretical CDF for the
doubly truncated sample is also needed. Let /y denote the theoretical CDF for
the complete sample. Furthermore, let zz; denote the value of the theoretical
CDF at H1 and zg the value of the theoretical CDF at H2, i.e. zp = Fo(H1)
and zpp = Fy(H2), where H1< H2. The theoretical CDF for the doubly truncated

sample is as follows:

0 x< HI1,

FO** (x)= FO(x)_E)(Hl) Hl<x<H2, (12)
F,(H2)~F, ()
1 x> H?2.

Under the null hypothesis, we have
B (X) - ULE, (1), £, (H2) | and £ (x)-U[0,1].

The test statistics for the doubly truncated samples were derived with the use
of equations (11) and (12), their general and computing formulas are presented in
Table 2. Appendix 1 contains derivation of the chosen statistic (AD**), derivation
of the remaining statistics is available upon request. The statistics are reduced to the
complete sample statistics when no truncation occurs (i.e. when zz1 = 0 and 2z = 1).
For 2z >0 and zpp = 1, the statistics for the left truncated samples are obtained. For
zr1 =0 and zpp < 1, the statistics for the right truncated samples are obtained. Fi-
nally, for zz71 > 0 and zg < 1, the statistics for the doubly truncated samples occurs.



TABLE 2
General and computing formulas of the test statistics for the doubly truncated samples

Symbol General and computing formulas

KS" = suplF, ()£ ()

KS**
B~ ~ »
KS = 7 max sup{zH1 +i(zH2 —zHl)—zj},sup{zj —(zm + ]—(sz -2y, )]}
22 T %m j n j n
V= \/—(sup {El (x) — FO (x)}+ sup {FO (x) -F (x)}]
V**
. Jn ' i—1
Vit sup{zHl +1(ZH2 _zHl)_Zj}+SuP{Zj _(Zm +j_(ZHz _Zm)j}
ZHy TR\ J n j n
A L)
B (-8 ()
AD**
J _ J=h,
ZHI+7(ZH2_ZH1)_ZJ' Z;=| Bm (ZHZ ZHl)
AD" = \/n max sup L ,sup “
’ \/(Zj_zHl)(zm_Zj) g \/(zj_zHl)(zHZ_zj)
15— gL )
S| OE ()
AD** . 1
’ zHl—i-l(sz—zHl)—zj zj—(zH1+](zH2—zH1)j
AD; = /n max sup z ,sup "

7 ZHZ_zj 7 ZHZ_Zj
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down

| F (%)
AD** . _1
dour zH1+i(zH2—zHl)—zj zj—(zm"'](zm_zm)j
ADZW = \/; max < sup Z ,sup L
j Z;~2Zm i Z; = 2m
Hok a2 ~ ok 2 2 sk
W = [ (B ()= B () i ()
. H1
wr =2y BB ! y 1-25 z,+;[n z,—2 zj
3 (ZHZ_ZHI) ”(ZHz_zHl)jZI:( ) ’ (ZHz_ZH1)2 ]z:;( ! Hl)
% (£ ()= F ()
x)— X .
ADz** _ nj' A**n OA** ng* (x)
AD2H* ity (x)(l_FO (x))
" 18 . 1$ )
AD? =—n+2nln(ZH2—zH1)+ZZ(1—2])ln(zj—zHl)—;Z(1+2(n—]))ln(zH2—z].)
j=1 j=1
% (£, ()~ £ (x))
n X)) x 2 ek
ADup =7ZI A - 2 dE) (x)
- H1 (I—FO (x))
AD up
AD;; :—ann(zHZ—zHl)—FZZn:ln(sz —zj)+M y (1+2(n—j)) !
= n = Zra TR
(B0 -E ()
A joum_nj. A 2 dF;) (x)
i (E (%)
AD down
AD; :—2nln(zH2—zH1)+2Zn:ln(zj—zH1)+M - (1-25) !
j=1 n j=1 Zy1 — %

Symbols: Fn (x) - the empirical cumulative distribution function (ECDF) for the doubly truncated sample; FB* (x) - the theoretical
cumulative distribution function for the doubly truncated sample; n - the sample size; H1, H2 - the truncation points; zm, Zum -
values of the theoretical CDF at H1 and H2 respectively.

Source: the author's own work.
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The null distributions of the test statistics presented above are unknown and

must be estimated. The null and alternative hypotheses of the GOF test, in case
of double truncation, are formulated as: H : F/ e Fo and H,: F g Fo ,where
“**” denotes double truncation. To determine the goodness-of-fit in the certain
proportion of the random sample, following bootstrap algorithm is proposed
(Algorithm 2):

1.

For the n-element sample X = (Xp- X, )’:

1.1. Estimate the parameters 0 of Fy, where Fy denotes the CDF of the
complete distribution.

1.2. Determine truncation points z,, = f'(’) (H1) and z,, = FO (H2).
Count the number of observations in the following intervals: (—eo, H1],
(H1, H2], (H2, «) and denote them as 71, 7, n3. Since now z1, 2,
n1, ny and 73 are fixed.

1.3. Compute the chosen test statistic To** for the doubly truncated sample.

. Generate B bootstrap samples from ]30: X = (Xl(i),...,X (i)), where

n

i=1,..., B. In every bootstrap sample, the number of observations in the in-
tervals (ﬁ(';l (0)’&71 (ZHI )]’(ﬁ(v)il (ZHl)’ﬁ;)il (ZH2 )]’(Ftv)il (ZHZ )’E;I (1)]

is respectively 77, 7 and 3.

. For each bootstrap sample X9 = (Xl(i), s X,Ei) ) )

3.1. Estimate the parameters 0" of Fy (for the complete sample).

3.2. Compute the test statistic T, (for the doubly truncated sample).

. Compute the p-value according to the formula:

ﬁ:#{ISz’SB:Ti**>To}+I.
B+1

(13)

. Reject the null hypothesis, if the p-value is less than or equal to the nominal

significance level o.
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4. Data and return distributions

The next section is based on the daily percentage log-returns of the FTSE100
closing prices. The time scope embraces two following years, 2019 and 2020. The
FTSE100 closing prices and percentage log-returns based on them differ strongly
between the 2019 and 2020 year, as the first one indicates the pre-pandemic and
the second one pandemic period (Table 3 and Chart 1).

TABLE 3
Descriptive statistics of the daily percentage log-returns of the FTSE100

Excess
kurtosis

Arithmetic Standard

mean deviation Skewness

2019 253 -3,2839  2,2272 0,0452 0,7397 -0,4402 2,1702

2020 254 -11,5124  8,6668 -0,0610 1,8584 -0,9965 7,8597

Source: the author's own work.

CHART 1
Closing prices and percentage log-returns of the FTSE100
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Source: the author's own work.
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CHART 2

The data generating and null hypothesis distributions fitted to the FTSE100

daily percentage log-returns

Data generating distribution (2019)
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Source: the author's own work.
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The distributions of the daily returns have fat tails, they are leptokurtic and
asymmetric, therefore they should have at least four parameters [Cont, 2001].
Thus the chosen distributions are: the hyperbolic distribution (HYP), the normal
inverse Gaussian distribution (NIG) and the skewed generalized error distribution
(SGED). The two-parameter normal distribution (N) has also been included in
the research for comparative purposes. The HYP and the NIG distributions, both
being the subclasses of the broader generalized hyperbolic family, have the same
four parameters z, J, a and (8, describing, respectively, the location, the scale, the
kurtosis and the skewness [Prause, 1999]. The SGED distribution is presented here
in the parametrization of Ayebo and Kozubowski [2003], with the parameters z, o
[ and x depicting the location, the scale, the shape and the skewness. The normal
distribution has the location parameter # and the scale parameter 4.

The empirical probability density function of the log-returns and the fitted
distributions, broken down by years, are presented in Chart 2. In each analyzed
year the data generating distribution and the null hypothesis distributions are dis-
tinguished. The data are generated from the NIG distribution. Its’ parameters are
estimated upon daily percentage log-returns of the FTSE100, separately calculated
for the 2019 and 2020 year. In the null hypothesis, four aforementioned distri-
butions were considered: HYP, N, NIG and SGED. As the NIG and HYP distribu-
tions are very close, the NIG distribution is not included on the null hypothesis
distributions’ figures.

5. Simulation study

In order to analyze the finite sample behavior of the developed tests, broad
Monte Carlo simulations were carried out. Simulations were conducted in accord-
ance with the following algorithm (Algorithm 3):

1. Determine the data generating distribution F and its parameters.
2. Generate Monte Carlo trials from F : xU) = (Xl(j), et X}Ej) ), where

j=1,... M.

3. For each Monte Carlo trail X = (X I(j X ;Ej ) ) verify the null hypothesis

H,: F e F, using Algorithm 2.

4. Count the number of rejections and divide it by M.

When estimating the empirical levels of the tests, the data generating El*istribu—

tion Fand the theoretical distribution included in the null hypothesis 7 are the

0
same. Here the empirical size is presented only for the NIG distribution. When
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estimating the empirical powers, Fand F, are different. As was already mentioned
in the previous section, the article presents the results when the data generating
distribution is NIG and the null hypothesis distributions are HYP, N or SGED.

There are no clear indications what the right number of simulations is [Mar-
tinez, Martinez, 2008]. Stute, Manteiga and Quindimil [1993], for the samples
of size n=20, 50, 100 and two-parameter data generating distributions, set the
number of Monte Carlo trials M to 1000 and the number of bootstrap replications
B to 500. Years later, despite the significant growth of the computing power, Pawsey
[2018] assumed that M = 1000 and B =199 for the samples of size n =20, 50,
100 and four-parameter data generating distributions. In the conducted research,
due to the available computational resources, it was assumed that M = 1000 and
B =100. It should be emphasized that the simulations were conducted for the
samples of size n =100, 200, 300, 400, 500 and 1000. All the tests were carried
out at the 5% level of significance. The results are shown in Table 4.

The empirical levels of the tests are emphasized in italic in Table 4. The empir-
ical levels are close to the 5% significance level in most of the cases, but it can also
be noticed that the tests for the central part of the distribution are conservative.
However, according to Tollenaar and Mooijaart [2003], conservative tests with
reasonable power are still useful. The empirical powers of the tests are presented in
regular font in Table 4. As was expected, the rejection rates increase with the rise of
the sample size. It can also be noticed that the empirical powers of the tests are low,
when the parameters of the data generating distribution are estimated upon the
prepandemic year 2019. During the dynamic year 2020 the distributions became
more recognizable and the empirical powers of the tests increased. Generally, the
tests for the complete distributions are more powerful than the tests for the selected
parts of the distribution, but they do not indicate where the biggest differences
appear. The introduced modified tests make it easy to notice it. The difference
between the NIG and the HYP distributions appears mainly in the lower tail. The
discrepancy between the NIG and the N distribution originates from the lower
tail and from the central part of the distribution. Finally, the difference between
the NIG and the SGED distributions become visible in the central part of the
distributions. One might also observe that different tests are suitable for different
parts of the distribution. Regarding the central part of the distribution, the tests
based on the V** statistic are generally more powerful than other considered
tests. Concerning the tails of the distribution, the tests based on the AD;;, Al
and AD;; o statistics usually have more power than other tests. Finally, for the
complete distribution, the quadratic versions of the statistics seem to be more
powerful than their supremum versions.
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TABLE 4

Empirical sizes and powers of the tests for the complete
and doubly truncated samples (in %)

True distribution
NIG (0.16; 1.00; 1.90; -0.22) NIG (0.24; 1.36; 0.45; -0.10)

Test statistic

— C
© C
o9 o
58 S
2 ®©
52 ¢
—

Q

cn ~
o

(11 [21 31 [4 [51 [6] [71]| (1] [2] [3]1 [4] [5] [6] [7]

100 38 31 68 - 32 28 - |70 66139 - 70 87 -
200 48 55 67 - 40 40 - |75 72156 - 84 89 -
— 300 38 56 67 - 42 49 - |90 82200 - 104125 -
=) 400 50 53 61 - 43 39 - |11,1107 207 - 120 169 -
500 43 48 92 - 53 52 - [123 141 256 - 163 204 -
1000 63 61 74 - 60 60 - (248 241 292 - 304 396 -

5 43 52 52 58 37 40 51|60 5313167 74 81 178

10 42 36 56 64 44 39 64| 85 63 134 172 97 116 204

15 47 42 49 50 47 39 56| 90 70 194 242 98 124 274

20 46 40 65 61 49 49 64| 98 55189 226110 14,7 263

[0, 0.05]

25 51 52 57 69 41 44 67|95 76197 257106 148 31,7

50 53 60 74 90 52 58 88178 103 27,7 315205 284 452

HYP

9 25 36 34 - 27 34 - |41 44 53 - 53 45 -

180 43 45 38 - 37 42 - |60 57 47 - 58 52 -

270 44 46 48 - 32 42 - |53 73 52 - 52 65 -

360 32 41 51 - 38 36 - |76 81 35 - 74 89 -

[0.05, 0.95]

450 35 44 46 - 38 42 - |75 85 40 - 70 95 -

900 54 54 46 - 41 41 - |164 186 40 - 163 188 -

5 40 46 37 28 30 34 29|62 68 66 80 63 56 78

10 44 43 53 43 41 44 38|50 50 79 95 42 49 97

15 41 39 58 54 38 39 52|52 54 97 104 56 61 112

[0.95, 1]

20 35 43 44 46 36 36 43|51 57112 130 52 63 145

25 40 62 64 58 45 43 62|46 50107 136 45 49 139

50 42 39 57 61 40 39 59|65 44170 177 70 971 209
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True distribution

NIG (0.16; 1.00; 1.90; -0.22) NIG (0.24; 1.36; 0.45; -0.10)
n

Test statistic

(11 [21 B1 4 [51 [6] [71|["1 [21 [3]1 [4] [5 ] 7

c
o
=
=)
Qo
=
=
A
gl

Truncation

©
o
=
]
—
o
)
<
—

100 22,3 270 352 - 305335 - | 746 81,6 684 857 874 -
200 405 492 476 - 535578 - |949 970 823 - 982 988 -
— 300 556 64,1 589 - 727769 - |997 999 925 - 10001000 -
=) 400 663 764 679 - 823 873 - |9991000 972 - 10001000 -
500 782 854 72,1 - 900 933 - (10001000 988 - 10001000 -
1000 97,1 990 864 - 996 99,7 - |[100,01000 999 - 10001000 -

5 11,17 58 296 346 124 193 365|241 11,9 592 649 280 503 69,0

10 169 11,2 434 50,3 196 32,6 549|454 259 80,9 851 524 77,7 899

15 26,0 144 523 58,6 30,3 47,3 67,8| 609 40,1 92,2 92,7 66,1 883 96,6

[0, 0.05]

20 31,5 185 583 64,3 36,5 554 74,7 | 758 54,4 959 96,5 785 94,7 99,3

25 389 229 66,0 705 454 639 819|834 64,6 97,2 97,4 851 97,2 99,2

50 66,2 44,0 82,0 83,8 71,0 884 943|983 93,9 9991000 99,1100,0100,0

90 13,7 217 35 - 171187 - |648 757 22 - 770 783 -

180 27,7 37,7 33 - 351392 - |946 967 29 - 976 982 -

270 452 566 36 - 573611 - |996 997 34 - 999 999 -

360 575689 36 - 692 738 - (10001000 55 - 10001000 -

[0.05,0.95]

450 685 782 35 - 814857 - |10001000 104 - 10001000 -

900 954 980 38 - 990 995 - [100,01000 499 - 10001000 -

5 62 57171200 65111 213 71 45 26,7 322 80 16,2 328

10 71 56210 255 78 120 281| 95 6,7 348 385 11,7 189 414

15 96 6,0 237 278 108 153 324|123 87 425 46,3 143 257 50,0

20 95 84 300 343 102 16,5 391|135 10,1 50,5 53,7 13,5 27,0 59,1

[0.95, 1]

25 104 76 30,7 353 12,0 188 420|156 12,1 54,2 558 18,1 33,9 64,0

50 159 12,7 459 51,2 18,0 30,7 61,4 23,0 20,0 72,1 72,4 26,5 49,5 81,4




Goodness-Of-Fit Tests for Doubly Truncated Data 75

True distribution

NIG (0.16; 1.00; 1.90; -0.22) NIG (0.24; 1.36; 0.45; -0.10)

n
Test statistic

c

o
=

=)
Qo
=
=
A
gl

Truncation

©
)
=
[
—
o
7}
c
—

100 39 42 58 - 36 29 - 36 38 52 - 34 34 -

2000 39 40 47 - 38 39 - 4,7 6,1 54 - 44 37 -

= 300 38 39 50 - 31 33 - 44 38 6,2 - 39 36 -
S, 400 43 53 54 - 55 55 - 51 55 6.2 - 55 48 -
500 40 44 57 - 50 44 - 55 55 55 - 54 47 -

1000 44 39 56 - 44 43 - 59 54 51 - 60 46 -

5 40 39 51 43 41 35 36| 40 54 54 36 47 50 30

10 62 56 55 47 50 59 41|49 42 51 32 50 43 34

g 15 33 39 52 51 34 40 38| 46 54 44 29 47 47 26

Cé 20 47 48 36 33 53 50 31| 51 54 43 33 45 47 29

25 4,7 51 45 35 44 42 40| 45 52 40 45 44 40 43

v 50 41 54 56 46 55 53 43| 47 47 41 49 49 48 38
z 90 36 42 47 - 46 32 - |48 54 54 - 34 32 -
. 180 33 25 42 - 30 24 - |45 45 49 - 35 34 -

§ 270 39 50 54 - 42 36 - | 36 37 59 - 43 51 -

g 360 38 40 46 - 29 34 - | 48 49 68 - 42 37 -

- 450 36 42 57 - 40 36 - | 41 52 49 - 45 40 -

900 38 48 53 - 45 42 - | 35 36 52 - 37 31 -

5 41 37 51 36 39 35 34| 43 44 44 43 46 45 36

10 50 66 50 39 42 45 41| 56 44 57 43 48 42 41

i 15 49 46 42 26 45 41 24| 47 51 50 44 40 41 41

g 20 4,7 54 57 45 45 39 44| 40 57 48 43 43 48 41

25 51 63 43 44 41 41 39| 49 47 52 39 47 45 40

50 52 52 48 47 52 53 47|45 56 53 60 38 46 54
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True distribution

NIG (0.16; 1.00; 1.90; -0.22) NIG (0.24; 1.36; 0.45; -0.10)

n
[11 [21 (31 [41 [5] [e1 [71| [11 [2] [3]1 [4] (5] [6] [7

c

o
=

=)
Qo
=
=
A
gl

Truncation

©
o
=
]
—
o
)
<
—

100 53 54 77 - 41 53 - 162 68 123 - 56 67 -
200 55 63129 - 69 63 - (11,0129 184 - 133 146 -
= 300 77 75134 - 79 88 - (131143 190 - 148 166 -
=) 400 78 90172 - 96117 - (182218 212 - 198 238 -
500 86 105178 - 105 116 - |195268 229 - 247 280 -
1000 16,0 193 21,8 - 194 201 - |340463 285 - 469 526 -

5 55 51 70 85 51 60 85|67 53 90 114 66 83 125

10 63 56 88 108 61 68 127| 65 55 106 169 61 7,7 17,7

15 43 37 92132 50 61 144 |87 74 138 222 8,6 100 26,1

[0, 0.05]

20 68 72104 150 60 70169 )| 87 72 145 208 89 108 24,1

25 59 64 100 132 45 52 144 |96 76 173 252 11,1 150 328

50 6,1 58 134 200 68 82 220|152 105 234 288 165 239 425

SGED

90 48 42 48 - 41 36 - |82 67 55 - 69 55 -

180 63 74 44 - 54 45 - |85103 41 - 75 57 -

270 88 89 48 - 71 54 - 131157 40 - 104 94 -

360 71 94 38 - 63 54 - 125178 42 - 98 97 -

[0.05,0.95]

450 86 124 31 - 73 46 - |176245 55 - 139119 -

900 136 192 37 - 157 98 - 276454 53 - 264 251 -

5 40 44 44 66 45 39 53[52 51 53 63 47 53 58

10 51 48 74 86 43 50 91|45 46 74 78 50 47 81

15 37 42 93 98 40 54 103|55 50 67 74 50 51 80

[0.95, 1]

20 43 48 95103 42 48 99|46 50 74 99 39 55 105

25 55 58102 11,0 60 5511941 49 89 98 39 42 99

50 52 46 109 128 51 60 148 | 54 61 98 11,2 50 50 123

Test statistics: [1]: KS*#; [2]: V4#; [3]: AD**; [4]: AD¥, ADRY - [5]: W2 [6]: AD?#++ [71: AD” %, AD?3%

up up’ down*

Source: the author's own work.
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6. Conclusions

Although the tests for the complete distributions are more powerful than the
tests for the certain proportions of the distribution, they do not indicate where
the biggest differences between the empirical and the theoretical distributions
appear. The statistics developed in this paper for doubly truncated distributions
and the statistical inference procedure taking into account the number of trun-
cated data allow to evaluate the goodness-of-fit of any part of unconditional
distribution, when the number of truncated data is known. The simulation study
confirmed that the tests have acceptable empirical size. Their empirical powers
depend mainly on the choice of the test statistic and less on the truncation points
and the sample sizes.
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