REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/6279
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorCoghetto, Roland-
dc.date.accessioned2018-02-08T08:10:29Z-
dc.date.available2018-02-08T08:10:29Z-
dc.date.issued2017-
dc.identifier.citationFormalized Mathematics, Volume 25, Issue 2, Pages 107–119-
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/6279-
dc.description.abstractSummaryIn this article we check, with the Mizar system [2], Pascal’s theorem in the real projective plane (in projective geometry Pascal’s theorem is also known as the Hexagrammum Mysticum Theorem)1. Pappus’ theorem is a special case of a degenerate conic of two lines. For proving Pascal’s theorem, we use the techniques developed in the section “Projective Proofs of Pappus’ Theorem” in the chapter “Pappus’ Theorem: Nine proofs and three variations” [11]. We also follow some ideas from Harrison’s work. With HOL Light, he has the proof of Pascal’s theorem2. For a lemma, we use PROVER93 and OTT2MIZ by Josef Urban4 [12, 6, 7]. We note, that we don’t use Skolem/Herbrand functions (see “Skolemization” in [1]).-
dc.language.isoen-
dc.publisherDeGruyter Open-
dc.subjectPascal’s theorem-
dc.subjectreal projective plane-
dc.subjectGrassman-Plücker relation-
dc.titlePascal’s Theorem in Real Projective Plane-
dc.typeArticle-
dc.identifier.doi10.1515/forma-2017-0011-
dc.description.AffiliationRue de la Brasserie 5, 7100 La Louvière, Belgium-
dc.description.referencesJesse Alama. Escape to Mizar for ATPs. arXiv preprint arXiv:1204.6615, 2012.-
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi: 10.1007/978-3-319-20615-817.-
dc.description.referencesRoland Coghetto. Homography in ℝ ℙ2. Formalized Mathematics, 24(4):239–251, 2016. doi: 10.1515/forma-2016-0020.-
dc.description.referencesRoland Coghetto. Group of homography in real projective plane. Formalized Mathematics, 25(1):55–62, 2017. doi: 10.1515/forma-2017-0005.-
dc.description.referencesAgata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.-
dc.description.referencesAdam Grabowski. Solving two problems in general topology via types. In Types for Proofs and Programs, International Workshop, TYPES 2004, Jouy-en-Josas, France, December 15-18, 2004, Revised Selected Papers, pages 138–153, 2004. doi: 10.1007/116179909.-
dc.description.referencesAdam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211–221, 2015. doi: 10.1007/s10817-015-9333-5.-
dc.description.referencesKanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. Formalized Mathematics, 11(4):381–383, 2003.-
dc.description.referencesWojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761–766, 1990.-
dc.description.referencesWojciech Leończuk and Krzysztof Prażmowski. Projective spaces – part I. Formalized Mathematics, 1(4):767–776, 1990.-
dc.description.referencesJürgen Richter-Gebert. Pappos’s Theorem: Nine Proofs and Three Variations, pages 3–31. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-17286-1. doi: 10.1007/978-3-642-17286-11.-
dc.description.referencesPiotr Rudnicki and Josef Urban. Escape to ATP for Mizar. In First International Workshop on Proof eXchange for Theorem Proving-PxTP 2011, 2011.-
dc.description.referencesWojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657–659, 1990.-
dc.description.referencesNobuyuki Tamura and Yatsuka Nakamura. Determinant and inverse of matrices of real elements. Formalized Mathematics, 15(3):127–136, 2007. doi: 10.2478/v10037-007-0014-7.-
dc.identifier.eissn1898-9934-
dc.description.volume25-
dc.description.issue2-
dc.description.firstpage107-
dc.description.lastpage119-
dc.identifier.citation2Formalized Mathematics-
Występuje w kolekcji(ach):Formalized Mathematics, 2017, Volume 25, Issue 2

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma-2017-0011.pdf315,36 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons