REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/5553
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorZiobro, Rafał-
dc.date.accessioned2017-06-02T11:53:00Z-
dc.date.available2017-06-02T11:53:00Z-
dc.date.issued2016-
dc.identifier.citationFormalized Mathematics, Volume 24, Issue 3, pp. 187-198pl
dc.identifier.issn1426-2630pl
dc.identifier.issn1898-9934pl
dc.identifier.urihttp://hdl.handle.net/11320/5553-
dc.description.abstractRepresentation of a non zero integer as a signed product of primes is unique similarly to its representations in various types of positional notations [4], [3]. The study focuses on counting the prime factors of integers in the form of sums or differences of two equal powers (thus being represented by 1 and a series of zeroes in respective digital bases).Although the introduced theorems are not particularly important, they provide a couple of shortcuts useful for integer factorization, which could serve in further development of Mizar projects [2]. This could be regarded as one of the important benefits of proof formalization [9].-
dc.language.isoen-
dc.publisherDe Gruyter Open-
dc.subjectintegers-
dc.subjectfactorization-
dc.subjectprimes-
dc.titlePrime Factorization of Sums and Differences of Two Like Powers-
dc.typeArticle-
dc.identifier.doi10.1515/forma-2016-0015-
dc.description.AffiliationDepartment of Carbohydrate Technology University of Agriculture Krakow, Poland-
dc.description.referencesGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.-
dc.description.referencesGrzegorz Bancerek, Czesław Bylinski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1.-
dc.description.referencesPaul Erdős and János Surányi. Topics in the Theory of Numbers, chapter Divisibility, the Fundamental Theorem of Number Theory, pages 1-37. Springer New York, 2003.-
dc.description.referencesJacek Gancarzewicz. Arytmetyka, 2000. In Polish.-
dc.description.referencesAndrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4): 573-577, 1997.-
dc.description.referencesArtur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179-186, 2004.-
dc.description.referencesRafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.-
dc.description.referencesRafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.-
dc.description.referencesAdam Naumowicz. An example of formalizing recent mathematical results in Mizar. Journal of Applied Logic, 4(4):396-413, 2006.-
dc.description.referencesAkira Nishino and Yasunari Shidama. The Maclaurin expansions. Formalized Mathematics, 13(3):421-425, 2005.-
dc.description.referencesKonrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.-
dc.description.referencesMarco Riccardi. Pocklington’s theorem and Bertrand’s postulate. Formalized Mathematics, 14(2):47-52, 2006.-
dc.description.referencesPiotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.-
dc.description.referencesRafał Ziobro. Fermat’s Little Theorem via divisibility of Newton’s binomial. Formalized Mathematics, 23(3):215-229, 2015.-
Występuje w kolekcji(ach):Formalized Mathematics, 2016, Volume 24, Issue 3

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma-2016-0015.pdf259,83 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons