Prime Factorization of Sums and Differences of Two Like Powers

Rafał Ziobro
Department of Carbohydrate Technology
University of Agriculture
Krakow, Poland

Summary. Representation of a non zero integer as a signed product of primes is unique similarly to its representations in various types of positional notations [1], [3]. The study focuses on counting the prime factors of integers in the form of sums or differences of two equal powers (thus being represented by 1 and a series of zeroes in respective digital bases).

Although the introduced theorems are not particularly important, they provide a couple of shortcuts useful for integer factorization, which could serve in further development of Mizar projects [2]. This could be regarded as one of the important benefits of proof formalization [9].

MSC: 11A51 03B35
Keywords: integers; factorization; primes
MML identifier: NEWTON03 version: 8.1.05 5.37.1275

From now on $a, b, c, d, x, j, k, l, m, n, o$ denote natural numbers, p, q, t, z, u, v denote integers, and a_1, b_1, c_1, d_1 denote complexes.

Let a be a natural number. Let us note that a is trivial if and only if the condition (Def. 1) is satisfied.

(Def. 1) $a \leq 1$.

Let a be a complex. Let us note that the functor a^2 yields a set and is defined by the term
Let a, b be integers. The functors: $\gcd(a, b)$ and $\text{lcm}(a, b)$ yielding natural numbers are defined by terms

$\gcd(|a|, |b|),$ $\text{lcm}(|a|, |b|),$ respectively. Let a, b be positive real numbers. Note that $\max(a, b)$ is positive and $\min(a, b)$ is positive.

Let a be a non zero integer and b be an integer. One can check that $\gcd(a, b)$ is non zero.

Let a be a non zero complex and n be a natural number. Let us observe that a^n is non zero.

Let a be a non trivial natural number and n be a non zero natural number. Note that a^n is non trivial.

Let a be an integer. One can check that $|a|$ is natural.

Let a be an even integer. Note that $|a|$ is even.

Let a be a natural number. Let us note that $\text{lcm}(a, a)$ reduces to a and $\gcd(a, a)$ reduces to a.

Let a be a non zero integer and b be an integer. Note that $\gcd(a, b)$ is positive.

Let a, b be integers. One can check that $\gcd(a, \gcd(a, b))$ reduces to $\gcd(a, b)$ and $\text{lcm}(a, \text{lcm}(a, b))$ reduces to $\text{lcm}(a, b)$.

Let a be an integer. Observe that $\gcd(a, 1)$ reduces to 1 and $\gcd(a + 1, a)$ reduces to 1.

Now we state the proposition:

(4) Let us consider integers t, z. Then $\gcd(t^n, z^n) = (\gcd(t, z))^n$.

Let a be an integer and n be a natural number.

One can verify that $\gcd((a + 1)^n, a^n)$ reduces to 1.

Let us consider a_1 and b_1. One can verify that $a_1^{-b_1}$ reduces to 0.

Let a be a non negative real number and n be a natural number. One can verify that a^n is non negative and there exists an odd natural number which is non trivial and there exists an even natural number which is non trivial.

Let a be a positive real number and n be a natural number. One can verify that a^n is positive.

Let a be an integer. One can verify that $a \cdot a$ is square and $\frac{a}{a}$ is square and there exists an element of \mathbb{N} which is non square and every element of \mathbb{N} which is prime is also non square and there exists a prime natural number which is even and there exists a prime natural number which is odd and every integer which is prime is also non square.

Let a be a square element of \mathbb{N}. Observe that \sqrt{a} is natural.
Let \(a \) be an integer. Let us note that \(a^2 \) is square and \(a \cdot a \) is square and there exists an integer which is non square and every natural number which is zero is also trivial and there exists a natural number which is square and there exists an element of \(\mathbb{N} \) which is non zero and there exists a square element of \(\mathbb{N} \) which is non trivial and every natural number which is trivial is also square and every integer which is non square is also non zero.

Now we state the propositions:

5. Let us consider integers \(a, b, c, d \). If \(a \mid b \) and \(c \mid d \), then \(a \cdot c \mid b \cdot d \).

Proof: If \(a \mid b \), then \(\text{lcm}(a, b) = |b| \) by \([8, (16)] \). □

Let \(a \) be an integer. Observe that \(\text{lcm}(a, 0) \) reduces to 0.

Let \(a \) be a natural number. Note that \(\text{lcm}(a, 1) \) reduces to \(a \).

Let us consider \(a \) and \(b \). Let us observe that \(\text{lcm}(a \cdot b, a) \) reduces to \(a \cdot b \) and \(\text{lcm}(\gcd(a, b), b) \) reduces to \(b \) and \(\gcd(a, \text{lcm}(a, b)) \) reduces to \(a \).

Let us consider integers \(a, b \). Now we state the propositions:

7. \(|a \cdot b| = (\gcd(a, b)) \cdot \text{lcm}(a, b)\).

8. \(\text{lcm}(a^n, b^n) = \text{lcm}(a, b)^n \). The theorem is a consequence of (4) and (7).

Let \(a \) be a square element of \(\mathbb{N} \) and \(b \) be a square element of \(\mathbb{N} \). One can check that \(\gcd(a, b) \) is square and \(\text{lcm}(a, b) \) is square.

Let \(a, b \) be square integers. One can verify that \(\gcd(a, b) \) is square and \(\text{lcm}(a, b) \) is square.

Now we state the proposition:

9. Let us consider an integer \(t \). Then \(t \) is odd if and only if \(\gcd(t, 2) = 1 \).

Proof: If \(t \) is odd, then \(\gcd(t, 2) = 1 \) by \([13, (1)] \). □

Let \(t \) be an integer. One can check that \(t \) is odd if and only if the condition (Def. 5) is satisfied.

(Def. 5) \(\gcd(t, 2) = 1 \).

Let \(a \) be an odd integer. Let us observe that \(|a| \) is odd and \(-a \) is odd.

Let \(a, b \) be even integers. Note that \(\gcd(a, b) \) is even.

Let \(a \) be an integer and \(b \) be an odd integer. Note that \(\gcd(a, b) \) is odd.

Let \(a \) be a natural number. One can check that \(|-a| \) reduces to \(a \).

Let \(t, z \) be even integers. One can check that \(t + z \) is even and \(t - z \) is even and \(t \cdot z \) is even.

Let \(t, z \) be odd integers. Note that \(t + z \) is even and \(t - z \) is even and \(t \cdot z \) is odd.

Let \(t \) be an odd integer and \(z \) be an even integer. Let us observe that \(t + z \) is odd and \(t - z \) is odd and \(t \cdot z \) is even.

Now we state the proposition:
(10) Let us consider a non zero, square integer \(a\), and an integer \(b\). If \(a \cdot b\) is square, then \(b\) is square.

Let \(a\) be a square element of \(\mathbb{N}\) and \(n\) be a natural number. Let us observe that \(a^n\) is square.

Let \(a\) be a square integer. Note that \(a^n\) is square.

Let \(a\) be a non zero, square integer and \(b\) be a non square integer. Let us note that \(a \cdot b\) is non square.

Let \(a\) be an element of \(\mathbb{N}\) and \(b\) be an even natural number. Note that \(a^b\) is square.

Let \(a\) be a non square element of \(\mathbb{N}\) and \(b\) be a non square integer. Let us observe that \(a \cdot b\) is non square.

Let \(a\) be a non zero, square integer and \(n\), \(m\) be natural numbers. Let us observe that \(a^n + a^m\) is non square.

Let \(a\) be a non trivial element of \(\mathbb{N}\). One can verify that \(a - 1\) is non zero.

Let \(a\) be a non zero, square integer and \(p\) be a prime natural number. Note that \(p \cdot a\) is non square.

Let \(a\) be a non trivial element of \(\mathbb{N}\). Let us observe that \(a \cdot b\) is non square.

Let \(a\), \(b\) be non zero integers. Let us note that \(\frac{\text{lcm}(a,b)}{\text{gcd}(a,b)}\) is integer and \(\frac{\text{lcm}(a,b)}{b}\) is integer and \(\frac{\text{gcd}(a,b)}{\text{lcm}(a,b)}\) is integer.

Let \(a\) be an even integer. One can verify that \(\text{gcd}(a,2)\) reduces to 2.

Let us observe that there exists an even natural number which is non zero.
Let a be an even integer and n be a non zero natural number. Let us observe that $a \cdot n$ is even and a^n is even.

Let a be an integer and n be a zero natural number. One can check that $a \cdot n$ is even and a^n is odd.

Let a be an element of \mathbb{N}. Note that $|a|$ reduces to a.

One can check that every integer which is non negative is also natural.

Let a be a non negative real number and n be a non zero natural number. Let us note that \(n \sqrt[n]{a^n} \) reduces to a and \((n \sqrt[n]{a})^n \) reduces to a.

Now we state the propositions:

(11) If $a \not| b$, then $a \cdot c \not| b$.

(12) Let us consider non negative real numbers a, b, and a positive natural number n. Then $a^n = b^n$ if and only if $a = b$.

Let a be a real number and n be an even natural number. One can verify that a^n is non negative.

Let a be a negative real number and n be an odd natural number. One can verify that a^n is negative.

Now we state the propositions:

(13) Let us consider real numbers a, b, and an odd natural number n. Then $a^n = b^n$ if and only if $a = b$. The theorem is a consequence of (12).

(14) If a and b are relatively prime, then for every non zero natural number n, $a \cdot b = c^n$ iff $\sqrt[n]{a}$, $\sqrt[n]{b} \in \mathbb{N}$ and $c = \sqrt[n]{a} \cdot \sqrt[n]{b}$.

Proof: If $a \cdot b = c^n$, then $\sqrt[n]{a}$, $\sqrt[n]{b} \in \mathbb{N}$ and $c = \sqrt[n]{a} \cdot \sqrt[n]{b}$ by \([14], (30)], \([11], (14)]\). □

(15) Let us consider a non zero natural number n, an integer a, and an integer b. Then $b^n | a^n$ if and only if $b | a$.

Proof: If $b^n | a^n$, then $b | a$ by \([10], (1)], \([14], (3)], (4), \([5], (3)]\). □

(16) Let us consider an integer a, and natural numbers m, n. If $m \geq n$, then $a^n | a^m$.

(17) Let us consider integers a, b. If $a | b$ and $b^n | c$, then $a^m | c$. The theorem is a consequence of (4).

(18) Let us consider integers a, p. If $p^{2 \cdot n + k} | a^2$, then $p^n | a$. The theorem is a consequence of (16), (4), and (12).

(19) Let us consider odd, square elements a, b of \mathbb{N}. Then $8 | a - b$.

Let us consider odd natural numbers a, b. Now we state the propositions:

(20) If $4 | a - b$, then $4 \not| a^n + b^n$.

(21) If $4 | a^n + b^n$, then $4 \not| a^{2 \cdot n} + b^{2 \cdot n}$.

(22) If $4 | a^n - b^n$, then $4 \not| a^{2 \cdot n} + b^{2 \cdot n}$.
Let us consider odd natural numbers a, b. If $2^m \mid a^n - b^n$, then $2^{m+1} \mid a^{2n} - b^{2n}$.

$a_1^3 - b_1^3 = (a_1 - b_1) \cdot (a_1^2 + b_1^2 + a_1 \cdot b_1)$. The theorem is a consequence of (2).

Let us consider an odd natural number n. Then $3 \mid a^n + b^n$ if and only if $3 \mid a + b$.

Proof: Consider k such that $n = 2 \cdot k + 1$. If $3 \mid a^n + b^n$, then $3 \mid a + b$ by [14, (173)], [5, (4)], [8, (1), (10)]. □

Let us consider an integer c. If $c \mid a - b$, then $c \mid a^n - b^n$.

Let us consider an odd natural number n. Then $3 \mid a^n - b^n$ if and only if $3 \mid a - b$.

Proof: Consider k such that $n = 2 \cdot k + 1$. If $3 \mid a^n - b^n$, then $3 \mid a - b$ by [14, (173)], [8, (10)], [5, (4)], [8, (1)]. □

Let us consider a natural number n. Then $a^n \equiv (a - b)^n \pmod{b}$.

Let us consider a non trivial natural number a. Then there exists a prime natural number n such that $n \mid a$.

Let us consider a prime natural number p. If $p \mid (p+(k+1)) \cdot (p-(k+1))$, then $k + 1 \geq p$.

Let us consider a prime natural number p, and a non zero natural number k. If $k < p$, then $p \nmid p^2 - k^2$. The theorem is a consequence of (30).

Let us consider integers a, b, and an odd, prime natural number p. If $p \nmid b$, then if $p \mid a - b$, then $p \nmid a + b$.

Let us consider a non zero, square element a of \mathbb{N}, and a prime natural number p. If $p \mid a$, then $a + p$ is not square.

Let us consider a non zero, square element a of \mathbb{N}, and a prime natural number p. If $a + p$ is square, then $p = 2 \cdot \sqrt{a} + 1$.

Let us consider integers a, b, c. Suppose a and b are relatively prime. Then $\gcd(c, a \cdot b) = (\gcd(c, a)) \cdot (\gcd(c, b))$.

Let us consider a prime natural number p. If $a \mid p^n$, then there exists k such that $a = p^k$.

Let us consider non zero natural numbers a, b and a prime natural number p. Now we state the propositions:

If $a + b = p$, then a and b are relatively prime.

If $a^n + b^n = p^n$, then a and b are relatively prime.

Let us consider non zero natural numbers a, b. If $c \geq a + b$, then $c^{k+1} \cdot (a + b) > a^{k+2} + b^{k+2}$.

Let us consider natural numbers \(a, c\), and a non zero natural number \(b\). If \(a \cdot b < c < a \cdot (b + 1)\), then \(a \nmid c\) and \(c \nmid a\).

Let us consider real numbers \(a, b\). Then \(a + b = \min(a, b) + \max(a, b)\).

Let us consider non negative real numbers \(a, b\). Then

(i) \(\max(a^n, b^n) = (\max(a, b))^n\), and
(ii) \(\min(a^n, b^n) = (\min(a, b))^n\).

Let us consider a prime natural number \(p\). Suppose \(a \cdot b = p^n\). Then there exist natural numbers \(k, l\) such that

(i) \(a = p^k\), and
(ii) \(b = p^l\), and
(iii) \(k + l = n\).

Let us consider non trivial natural numbers \(a, b\). If \(a\) and \(b\) are relatively prime, then \(a \nmid b\) and \(b \nmid a\).

Let us consider a non trivial natural number \(a\), and a prime natural number \(p\). If \(p > a\), then \(p \nmid a\) and \(a \nmid p\). The theorem is a consequence of (44).

Let us consider a prime natural number \(p\). Then

(i) \(\gcd(a, p) = 1\), or
(ii) \(\gcd(a, p) = p\).

Let us consider a non trivial natural number \(a\), and a prime natural number \(p\). If \(a \mid p^n\), then \(p \mid a\). The theorem is a consequence of (46).

Let us consider odd natural numbers \(a, b\), and an even natural number \(m\). Then \(2\text{-count}(a^m + b^m) = 1\).

Let us consider a non zero natural number \(a\). Then there exists an odd natural number \(k\) such that \(a = 2^{\text{2-count}(a)} \cdot k\).

Let us consider a non zero natural number \(b\). Suppose \(a > b\). Then there exists a prime natural number \(p\) such that \(p\text{-count}(a) > p\text{-count}(b)\).

Proof: If for every prime natural number \(p\), \(p\text{-count}(a) \leq p\text{-count}(b)\), then \(a \leq b\) by [12] (20), [11] (14). □

Let us consider natural numbers \(a, b, c\). Suppose \(a \neq 1\) and \(b \neq 0\) and \(c \neq 0\) and \(b > a\text{-count}(c)\). Then \(a^b \nmid c\). The theorem is a consequence of (11).

Let us consider a non zero integer \(b\) and an integer \(a\). Now we state the propositions:

(52) If \(|a| \neq 1\), then \(a^{\lfloor a^{-\text{count}(|b|)} \rfloor} \mid b\) and \(a^{\lfloor a^{-\text{count}(|b|)} \rfloor} + 1 \nmid b\).

(53) If \(|a| \neq 1\), then if \(a^n \mid b\) and \(a^{n+1} \nmid b\), then \(n = |a|^{-\text{count}(|b|)}\).
(54) Let us consider a non zero natural number \(b \), and a non trivial natural number \(a \). Then \(a \mid b \) if and only if \(a\)-count(\(\gcd(a, b) \)) = 1.

Proof: If \(a \mid b \), then \(a\)-count(\(\gcd(a, b) \)) = 1 by \([14] (3), [6] (22)\]. □

(55) Let us consider non zero natural numbers \(b, n \), and a non trivial natural number \(a \). Then \(a\)-count(\(\gcd(a, b) \)) = 1 if and only if \(a^n\)-count((\(\gcd(a, b) \))^n) = 1. The theorem is a consequence of (15), (54), and (4).

(56) Let us consider a non zero natural number \(b \), and a non trivial natural number \(a \). Then \(a\)-count(\(\gcd(a, b) \)) = 0 if and only if \(a\)-count(\(\gcd(a, b) \)) ≠ 1. The theorem is a consequence of (54).

Let \(a, b \) be integers. The functor \(a\)-count(\(b \)) yielding a natural number is defined by the term
(Def. 6) \(|a|\)-count(\(|b| \)).

Let \(a \) be an integer. Assume \(|a| \neq 1\). Let \(b \) be a non zero integer. One can check that the functor \(a\)-count(\(b \)) is defined by
(Def. 7) \(a^i \mid b \) and \(a^{i+1} \nmid b \).

Now we state the propositions:

(57) Let us consider a prime natural number \(p \), and non zero integers \(a, b \). Then \(p\)-count(\(a \cdot b \)) = (\(p\)-count(\(a \))) + (\(p\)-count(\(b \))).

(58) Let us consider a non trivial natural number \(a \), and a non zero natural number \(b \). Then \(a\)-count(\(b \)) ≤ \(b \).

(59) Let us consider a non trivial natural number \(a \), and a non zero integer \(b \). Then \(a^n \mid b \) if and only if \(n \leq a\)-count(\(b \)).

Proof: If \(a^n \mid b \), then \(n \leq a\)-count(\(b \)) by \([8] (9), [7] (89), [1] (13)\). If \(a^n \nmid b \), then \(a\)-count(\(b \)) < \(n \) by \([8] (9), [7] (89)\). □

(60) Let us consider a non trivial natural number \(a \), a non zero integer \(b \), and a non zero natural number \(n \). Then \(n \cdot (a\)-count(\(b \)) < \(n \cdot ((a\)-count(\(b \)) + 1) \). The theorem is a consequence of (4) and (59).

(61) Let us consider a non trivial natural number \(a \), and non zero natural numbers \(b, n \). If \(b < a \), then \(a\)-count(\(b^n \)) < \(n \). The theorem is a consequence of (60).

(62) Let us consider a non trivial natural number \(a \), and a non zero natural number \(b \). If \(b < a^n \), then \(a\)-count(\(b \)) < \(n \). The theorem is a consequence of (59).

(63) Let us consider non zero natural numbers \(a, b \), and a non trivial natural number \(n \). Then \(a + b\)-count(\(a^n + b^n \)) < \(n \). The theorem is a consequence of (62).

(64) Let us consider non zero natural numbers \(a, b \). Then \(\gcd(a, b) = 1 \) if and only if for every non trivial natural number \(c \), (\(c\)-count(\(a \))) · (\(c\)-count(\(b \))) = 0.
Proof: If $\gcd(a, b) = 1$, then for every non trivial natural number c, $(c\text{-count}(a)) \cdot (c\text{-count}(b)) = 0$ by \[6 \ (27)\]. If for every prime natural number c, $(c\text{-count}(a)) \cdot (c\text{-count}(b)) = 0$, then $\gcd(a, b) = 1$ by \[6 \ (27)\]. □

Let us consider a non zero, even natural number m and odd natural numbers a, b. Now we state the propositions:

(65) If $a \neq b$, then $2\text{-count}(a^2 \cdot m - b^2 \cdot m) \geq (2\text{-count}(a^m - b^m)) + 1$. The theorem is a consequence of (12), (23), and (59).

(66) If $a \neq b$, then $2\text{-count}(a^2 \cdot m - b^2 \cdot m) = (2\text{-count}(a^m - b^m)) + 1$. The theorem is a consequence of (12), (57), and (48).

Let us consider a prime natural number p and integers a, b. Now we state the propositions:

(67) If $|a| \neq |b|$, then $p\text{-count}(a^2 - b^2) = (p\text{-count}(a - b)) + (p\text{-count}(a + b))$.

(68) If $|a| \neq |b|$, then $p\text{-count}(a^3 - b^3) = (p\text{-count}(a - b)) + (p\text{-count}(a^2 + a \cdot b + b^2))$. The theorem is a consequence of (24).

(69) Let us consider non zero natural numbers a, b. Then $\frac{a}{\gcd(a, b)} = \frac{\text{lcm}(a, b)}{b}$.

Let us consider a non zero natural number b. Now we state the propositions:

(70) $\text{lcm}(a, a \cdot n + b) = ((\frac{a}{b}) + 1) \cdot \text{lcm}(a, b)$. The theorem is a consequence of (69).

(71) $\text{lcm}(a, (n \cdot a + 1) \cdot b) = (n \cdot a + 1) \cdot \text{lcm}(a, b)$. The theorem is a consequence of (70).

(72) Let us consider a non trivial natural number a, and non zero natural numbers n, b. Then $a\text{-count}(b) \geq n \cdot (a^n\text{-count}(b))$. The theorem is a consequence of (51).

Let us consider odd integers a, b. Now we state the propositions:

(73) $4 \mid a - b$ if and only if $4 \nmid a + b$.

(74) $2\text{-count}(a^2 + b^2) = 1$. The theorem is a consequence of (5) and (73).

(75) Let us consider a prime natural number p, and natural numbers a, b. Suppose $a \neq b$. Then $p\text{-count}(a + b) \geq p\text{-count}(\gcd(a, b))$.

(76) Let us consider a non zero integer a, a non trivial natural number b, and an integer c. If $a = b^{p\text{-count}(a)} \cdot c$, then $b \nmid c$.

Let a be a non zero integer and b be a non trivial natural number. Let us note that $\frac{a}{p\text{-count}(a)}$ is integer and $\frac{a}{2^{p\text{-count}(a)}}$ is integer and $\frac{a}{2^{p\text{-count}(a)}}$ is odd.

Now we state the proposition:

(77) Let us consider a non zero integer a, and a non trivial natural number b. Then $b\text{-count}(a) = 0$ if and only if $b \nmid a$.

Let a be an odd integer. Observe that $2\text{-count}(a)$ is zero.
Observe that \(\frac{a}{2^{\text{count}(a)}} \) reduces to \(a \).

Now we state the propositions:

(78) Let us consider a prime natural number \(a \), a non zero integer \(b \), and a natural number \(c \). Then \(a\text{-count}(b^c) = c \cdot (a\text{-count}(b)) \).

(79) Let us consider non zero natural numbers \(a \), \(b \), and an odd natural number \(n \). Then \(\frac{a^{n+2}+b^{n+2}}{a+b} = a^{n+1} + b^{n+1} - a \cdot b \cdot (\frac{a^n+b^n}{a+b}) \). The theorem is a consequence of (3).

(80) Let us consider odd integers \(a \), \(b \), and a natural number \(n \). Then \(2\text{-count}(a^2n+1 - b^2n+1) = 2\text{-count}(a - b) \). The theorem is a consequence of (13), (2), and (57).

(81) Let us consider odd integers \(a \), \(b \), and an odd natural number \(m \). Then \(2\text{-count}(a^m+b^m) = 2\text{-count}(a+b) \). The theorem is a consequence of (80).

(82) Let us consider odd natural numbers \(a \), \(b \). Suppose \(a \neq b \). Then \(1 = \min(2\text{-count}(a-b), 2\text{-count}(a+b)) \).

Let us consider a non trivial natural number \(a \) and non zero integers \(b \), \(c \).

Now we state the propositions:

(83) If \(a\text{-count}(b) > a\text{-count}(c) \), then \(a^{a\text{-count}(c)} \mid b \) and \(a^{a\text{-count}(b)} \nmid c \).

(84) If \(a^{a\text{-count}(b)} \mid c \) and \(a^{a\text{-count}(c)} \mid b \), then \(a\text{-count}(b) = a\text{-count}(c) \). The theorem is a consequence of (83).

(85) Let us consider integers \(a \), \(b \), and natural numbers \(m \), \(n \). If \(a^n \mid b \) and \(a^m \nmid b \), then \(m > n \). The theorem is a consequence of (16).

Let us consider a non trivial natural number \(a \) and non zero integers \(b \), \(c \).

Now we state the propositions:

(86) If \(a\text{-count}(b) = a\text{-count}(c) \) and \(a^n \mid b \), then \(a^n \mid c \). The theorem is a consequence of (85).

(87) \(a\text{-count}(b) = a\text{-count}(c) \) if and only if for every natural number \(n \), \(a^n \mid b \) iff \(a^n \mid c \).

Proof: If \(a\text{-count}(b) \neq a\text{-count}(c) \), then there exists a natural number \(n \) such that \(a^n \mid b \) and \(a^n \nmid c \) or \(a^n \mid c \) and \(a^n \nmid b \) by (83), ([1] (13)], [7] (89)], [9] (9)]. \(\square \)

(88) Let us consider odd integers \(a \), \(b \). Suppose \(|a| \neq |b| \). Then

(i) \(2\text{-count}((a - b)^2) \neq 2\text{-count}((a + b)^2) \), and

(ii) \(2\text{-count}((a - b)^2) \neq (2\text{-count}(a^2)) - b^2 \).

The theorem is a consequence of (78), (73), and (87).

(89) Let us consider a non trivial natural number \(b \), and a non zero integer \(a \). Then \(b\text{-count}(a) \neq 0 \) if and only if \(b \mid a \).

Proof: \(b\text{-count}(|a|) \neq 0 \) iff \(b \mid |a| \) by [6] (27)]. \(\square \)
(90) Let us consider a non trivial natural number b, and a non zero natural number a. Then $b\text{-count}(a) = 0$ if and only if $a \mod b \neq 0$. The theorem is a consequence of (89).

(91) Let us consider a prime natural number p, and a non trivial natural number a. Then $a\text{-count}(p) \leq 1$.

(92) Let us consider non trivial natural numbers a, b, and a non zero natural number c. Then $a^{(a\text{-count}(b)) \cdot (b\text{-count}(c))} \leq c$. The theorem is a consequence of (58).

(93) Let us consider a prime natural number p, a non trivial natural number a, and a non zero natural number b. Then $a\text{-count}(p^b) \leq b$. The theorem is a consequence of (89) and (59).

(94) Let us consider non trivial natural numbers a, b, and a non zero natural number c. Then $a\text{-count}(b \cdot c) \leq a\text{-count}(c)$. The theorem is a consequence of (17).

(95) Let us consider non trivial natural numbers a, b, and a non zero natural number c. Then $(a\text{-count}(b) \cdot (b\text{-count}(c))) \leq a\text{-count}(c)$. The theorem is a consequence of (92).

(96) Let us consider a non trivial natural number a, and an odd natural number b. Then $2\text{-count}(a \cdot b) = 2\text{-count}(a)$.

Let us consider a non trivial natural number a. Now we state the propositions:

(97) $a^{n+1} + a^n < a^{n+2}$.

(98) $(a + 1)^n + (a + 1)^n < (a + 1)^{n+1}$.

(99) Let us consider a non trivial, odd natural number a. Then $a^n + a^n < a^{n+1}$. The theorem is a consequence of (98).

(100) Let us consider a non trivial natural number p. If $a \nmid b$, then $(p^a)^c \neq p^b$.

(101) Let us consider non zero integers a, b, and a non zero natural number n. Suppose there exists a prime natural number p such that $n \nmid p\text{-count}(a)$. Then $a \neq b^n$.

(102) Let us consider non zero integers a, b, and a non zero natural number n. Suppose $a = b^n$. Let us consider a prime natural number p. Then $n \mid p\text{-count}(a)$.

(103) Let us consider positive real numbers a, b, and a non trivial natural number n. Then $(a + b)^n > a^n + b^n$. The theorem is a consequence of (42) and (41).

(104) Let us consider non zero integers a, b, and an odd, prime natural number p. Suppose $|a| \neq |b|$ and $p \nmid b$. Then $p\text{-count}(a^2 - b^2) = \max(p\text{-count}(a - b), p\text{-count}(a + b))$. The theorem is a consequence of (32), (77), and (57).
Let us consider a non trivial natural number \(a \), and a non zero integer \(b \). Then \(a\text{-count}(a^n \cdot b) = n + (a\text{-count}(b)) \).

ACKNOWLEDGEMENT: Ad Maiorem Dei Gloriam

REFERENCES

Received June 30, 2016