REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/3632
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorFuta, Yuichi-
dc.contributor.authorOkazaki, Hiroyuki-
dc.contributor.authorMizushima, Daichi-
dc.contributor.authorShidama, Yasunari-
dc.date.accessioned2015-12-06T19:05:20Z-
dc.date.available2015-12-06T19:05:20Z-
dc.date.issued2012-
dc.identifier.citationFormalized Mathematics, Volume 20, Issue 1, 2012, Pages 87-95-
dc.identifier.issn1426-2630-
dc.identifier.issn1898-9934-
dc.identifier.urihttp://hdl.handle.net/11320/3632-
dc.description.abstractIn this article, we formalize operations of points on an elliptic curve over GF(p). Elliptic curve cryptography [7], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security. We prove that the two operations of points: compellProjCo and addellProjCo are unary and binary operations of a point over the elliptic curve.-
dc.language.isoen-
dc.publisherDe Gruyter Open-
dc.titleOperations of Points on Elliptic Curve in Projective Coordinates-
dc.typeArticle-
dc.identifier.doi10.2478/v10037-012-0012-2-
dc.description.AffiliationFuta Yuichi - Shinshu University, Nagano, Japan-
dc.description.AffiliationOkazaki Hiroyuki - Shinshu University, Nagano, Japan-
dc.description.AffiliationMizushima Daichi - Shinshu University, Nagano, Japan-
dc.description.AffiliationShidama Yasunari - Shinshu University, Nagano, Japan-
dc.description.referencesGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.-
dc.description.referencesCzesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.-
dc.description.referencesCzesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.-
dc.description.referencesCzesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.-
dc.description.referencesCzesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.-
dc.description.referencesYuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Set of points on elliptic curve in projective coordinates. Formalized Mathematics, 19(3):131-138, 2011, doi: 10.2478/v10037-011-0021-6.-
dc.description.referencesG. Seroussi I. Blake and N. Smart. Elliptic Curves in Cryptography. Number 265 in London Mathematical Society Lecture Note Series. Cambridge University Press, 1999.-
dc.description.referencesEugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.-
dc.description.referencesRafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.-
dc.description.referencesRafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.-
dc.description.referencesChristoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.-
dc.description.referencesAndrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.-
dc.description.referencesAndrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.-
dc.description.referencesMichał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.-
dc.description.referencesWojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.-
dc.description.referencesWojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.-
dc.description.referencesZinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.-
Występuje w kolekcji(ach):Formalized Mathematics, 2012, Volume 20, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
v10037-012-0012-2.pdf281,62 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons