Operations of Points on Elliptic Curve in Projective Coordinates

Yuichi Futa
Shinshu University
Nagano, Japan

Hiroyuki Okazaki1
Shinshu University
Nagano, Japan

Daichi Mizushima
Shinshu University
Nagano, Japan

Yasunari Shidama2
Shinshu University
Nagano, Japan

\textbf{Summary.} In this article, we formalize operations of points on an elliptic curve over $\mathbb{GF}(p)$. Elliptic curve cryptography [7], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security. We prove that the two operations of points: $\text{compell}_{\text{ProjCo}}$ and $\text{addell}_{\text{ProjCo}}$ are unary and binary operations of a point over the elliptic curve.

The terminology and notation used here are introduced in the following papers: [5], [17], [3], [1], [13], [4], [2], [12], [14], [10], [9], [16], [15], [8], [11], and [6].

1. Arithmetic in $\mathbb{GF}(p)$

For simplicity, we adopt the following convention: i, j denote integers, n denotes a natural number, K denotes a field, and $a_1, a_2, a_3, a_4, a_5, a_6$ denote elements of K.

One can prove the following propositions:

1. If $a_1 = -a_2$, then $a_1^2 = a_2^2$.
2. $(1_K)^{-1} = 1_K$.

1This work was supported by JSPS KAKENHI 21240001.

2This work was supported by JSPS KAKENHI 22300285.
(3) If $a_2 \neq 0_K$ and $a_4 \neq 0_K$ and $a_1 \cdot a_2^{-1} = a_3 \cdot a_4^{-1}$, then $a_1 \cdot a_4 = a_2 \cdot a_3$.
(4) If $a_2 \neq 0_K$ and $a_4 \neq 0_K$ and $a_1 \cdot a_4 = a_2 \cdot a_3$, then $a_1 \cdot a_2^{-1} = a_3 \cdot a_4^{-1}$.
(5) If $a_1 = 0_K$ and $n > 1$, then $a_1^n = 0_K$.
(6) If $a_1 = -a_2$, then $-a_1 = a_2$.
(7) $a_1+a_2+a_3+a_4 = a_4+a_2+a_3+a_1$ and $a_1+a_2+a_3+a_4 = a_1+a_4+a_3+a_2$.
(8) $(a_1 \cdot a_2 \cdot a_3) \cdot a_4 = a_1 \cdot (a_2 \cdot a_3 \cdot a_4)$ and $(a_1 \cdot a_2 \cdot a_3 \cdot a_4) \cdot a_5 = a_1 \cdot (a_2 \cdot a_3 \cdot a_4 \cdot a_5)$.
(9) $(a_1 \cdot a_2 \cdot a_3 + a_4 + a_5) + a_6 = a_1 + (a_2 + a_3 + a_4 + a_5 + a_6)$.
(10) $a_1 \cdot a_2 \cdot a_3 \cdot a_4 = a_1 \cdot a_2 \cdot a_3 \cdot a_1$ and $a_1 \cdot a_2 \cdot a_3 \cdot a_4 = a_1 \cdot a_4 \cdot a_3 \cdot a_2$.
(11) $(a_1 \cdot a_2 \cdot a_3) \cdot a_4 = a_1 \cdot (a_2 \cdot a_3 \cdot a_4)$ and $(a_1 \cdot a_2 \cdot a_3 \cdot a_4) \cdot a_5 = a_1 \cdot (a_2 \cdot a_3 \cdot a_4 \cdot a_5)$.
(12) $(a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_5) \cdot a_6 = a_1 \cdot (a_2 \cdot a_3 \cdot a_4 \cdot a_5 \cdot a_6)$ and $a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_5 \cdot a_6 = a_1 \cdot (a_2 \cdot a_3 \cdot a_4 \cdot a_5 \cdot a_6)$.
(13) $(a_1 \cdot a_2 \cdot a_3)^n = a_1^n \cdot a_2^n \cdot a_3^n$.
(14) $a_1 \cdot (a_2 + a_3 + a_4) = a_1 \cdot a_2 + a_1 \cdot a_3 + a_1 \cdot a_4$ and $a_1 \cdot ((a_2 + a_3) - a_4) = (a_1 \cdot a_2 + a_1 \cdot a_3) - a_1 \cdot a_4$ and $a_1 \cdot ((a_2 - a_3) + a_4) = (a_1 \cdot a_2 - a_1 \cdot a_3) + a_1 \cdot a_4$ and $a_1 \cdot (a_2 - a_3 - a_4) = a_1 \cdot a_2 - a_1 \cdot a_3 - a_1 \cdot a_4$ and $a_1 \cdot ((-a_2 + a_3) - a_4) = (-a_1 \cdot a_2 + a_1 \cdot a_3) - a_1 \cdot a_4$ and $a_1 \cdot ((-a_2 - a_3) + a_4) = (-a_1 \cdot a_2 - a_1 \cdot a_3) + a_1 \cdot a_4$ and $a_1 \cdot ((-a_2 - a_3 - a_4) = -a_1 \cdot a_2 - a_1 \cdot a_3 - a_1 \cdot a_4$.
(15) $(a_1 + a_2) \cdot (a_1 - a_2) = a_1^2 - a_2^2$.
(16) $(a_1 + a_2) \cdot ((a_1^2 - a_1 \cdot a_2) + a_2^2) = a_1^3 + a_2^3$.
(17) $(a_1 - a_2) \cdot (a_1^2 + a_1 \cdot a_2 + a_2^2) = a_1^3 - a_2^3$.

Let n, p be natural numbers. We say that p is n or greater if and only if:

(Def. 1) $n \leq p$.

Let us note that there exists a natural number which is 5 or greater and prime.

The following propositions are true:

(18) For all elements g_1, g_2, g_3, a of $GF(p)$ such that $g_1 = i \mod p$ and $g_2 = j \mod p$ and $g_3 = (i + j) \mod p$ holds $g_1 \cdot a + g_2 \cdot a = g_3 \cdot a$.
(19) For all elements g_1, g_2, a of $GF(p)$ such that $g_1 = i \mod p$ and $g_2 = j \mod p$ and $j = i + 1$ holds $g_1 \cdot a + a = g_2 \cdot a$.
(20) For all elements g_4, a of $GF(p)$ such that $g_4 = 2 \mod p$ holds $a + a = g_4 \cdot a$.
(21) For all elements g_1, g_2, g_3, a of $GF(p)$ such that $g_1 = i \mod p$ and $g_2 = j \mod p$ and $g_3 = (i - j) \mod p$ holds $g_1 \cdot a - g_2 \cdot a = g_3 \cdot a$.
(22) For all elements g_1, g_2, a of $GF(p)$ such that $g_1 = i \mod p$ and $g_2 = j \mod p$ and $i = j + 1$ holds $g_1 \cdot a - g_2 \cdot a = a$.
(23) For all elements g_1, g_2, a of $GF(p)$ such that $g_1 = i \mod p$ and $g_2 = j \mod p$ and $i = j + 1$ holds $g_1 \cdot a - a = g_2 \cdot a$.
For all elements \(g_4 \), \(a \) of \(GF(p) \) such that \(g_4 = 2 \mod p \) holds \(g_4 \cdot a - a = a \).

For all elements \(g_4 \), \(a \), \(b \) of \(GF(p) \) such that \(g_4 = 2 \mod p \) holds \((a + b)^2 = a^2 + g_4 \cdot a \cdot b + b^2\).

For all elements \(g_4 \), \(a \), \(b \) of \(GF(p) \) such that \(g_4 = 2 \mod p \) holds \((a - b)^2 = (a^2 - g_4 \cdot a \cdot b) + b^2\).

For all elements \(g_4 \), \(a \), \(b \), \(c \), \(d \) of \(GF(p) \) such that \(g_4 = 2 \mod p \) holds \((a + c + b \cdot d)^2 = a^2 \cdot c^2 + g_4 \cdot a \cdot b \cdot c \cdot d + b^2 \cdot d^2\).

Let \(p \) be a prime number, \(n \) be a natural number, and \(g_4 \) be an element of \(GF(p) \). If \(p > 2 \) and \(g_4 = 2 \mod p \), then \(g_4 \neq 0_{GF(p)} \) and \(g_4^n \neq 0_{GF(p)} \).

Let \(p \) be a prime number, \(n \) be a natural number, and \(g_4 \), \(g_5 \) be elements of \(GF(p) \). If \(p > 3 \) and \(g_5 = 3 \mod p \), then \(g_5 \neq 0_{GF(p)} \) and \(g_5^n \neq 0_{GF(p)} \).

2. Parameters of an Elliptic Curve

Let \(p \) be a 5 or greater prime number. The parameters of elliptic curve \(p \) yielding a subset of \((\text{the carrier of } GF(p)) \times (\text{the carrier of } GF(p))\) is defined as follows:

(Def. 2) The parameters of elliptic curve \(p = \{(a, b); a \text{ ranges over elements of } GF(p), b \text{ ranges over elements of } GF(p): \text{Disc}(a) \neq 0_{GF(p)}\}\).

Let \(p \) be a 5 or greater prime number. Observe that the parameters of elliptic curve \(p \) is non empty.

Let \(p \) be a 5 or greater prime number and let \(z \) be an element of the parameters of elliptic curve \(p \). Then \(z_1 \) is an element of \(GF(p) \). Then \(z_2 \) is an element of \(GF(p) \).

The following proposition is true

(30) Let \(p \) be a 5 or greater prime number and \(z \) be an element of the parameters of elliptic curve \(p \). Then \(p > 3 \) and \(\text{Disc}(z_1) \neq 0_{GF(p)} \).

For simplicity, we adopt the following rules: \(p_1 \), \(p_2 \), \(p_3 \) denote sets, \(P_1 \), \(P_2 \), \(P_3 \) denote elements of \(GF(p) \), \(P \) denotes an element of \(\text{ProjCo}(GF(p)) \), and \(O \) denotes an element of \(\text{EC}_{\text{SetProjCo}}(a) \).

Let \(p \) be a prime number, let \(a \), \(b \) be elements of \(GF(p) \), and let \(P \) be an element of \(\text{EC}_{\text{SetProjCo}}(a) \). The functor \(P_1 \) yields an element of \(GF(p) \) and is defined as follows:

(Def. 3) If \(P = \langle p_1, p_2, p_3 \rangle \), then \(P_1 = p_1 \).

The functor \(P_2 \) yielding an element of \(GF(p) \) is defined as follows:

(Def. 4) If \(P = \langle p_1, p_2, p_3 \rangle \), then \(P_2 = p_2 \).

The functor \(P_3 \) yielding an element of \(GF(p) \) is defined by:

(Def. 5) If \(P = \langle p_1, p_2, p_3 \rangle \), then \(P_3 = p_3 \).

We now state three propositions:
(31) For every prime number \(p \) and for all elements \(a, b \) of \(\text{GF}(p) \) and for every element \(P \) of \(\text{EC}_{\text{SetProjCo}}(a) \) holds \(P = \{P_1, P_2, P_3\} \).

(32) Let \(p \) be a prime number, \(a, b \) be elements of \(\text{GF}(p) \), \(P \) be an element of \(\text{EC}_{\text{SetProjCo}}(a) \), and \(Q \) be an element of \(\text{ProjCo}(\text{GF}(p)) \). Then \(P = Q \) if and only if the following conditions are satisfied:

(i) \(P_1 = Q_1 \),

(ii) \(P_2 = Q_2 \), and

(iii) \(P_3 = Q_3 \).

(33) Let \(p \) be a prime number, \(a, b, P_1, P_2, P_3 \) be elements of \(\text{GF}(p) \), and \(P \) be an element of \(\text{EC}_{\text{SetProjCo}}(a) \). If \(P = \{P_1, P_2, P_3\} \), then \(P_1 = P_1 \) and \(P_2 = P_2 \) and \(P_3 = P_3 \).

Let \(p \) be a prime number, let \(P \) be an element of \(\text{ProjCo}(\text{GF}(p)) \), and let \(C_1 \) be a function from \((\text{the carrier of } \text{GF}(p)) \times (\text{the carrier of } \text{GF}(p)) \times (\text{the carrier of } \text{GF}(p))\) into \(\text{GF}(p) \). We say that \(P \) is on curve defined by an equation \(C_1 \) if and only if:

(Def. 6) \(C_1(P) = 0_{\text{GF}(p)} \).

The following two propositions are true:

(34) \(P \) is on curve defined by an equation \(\text{EC}_{\text{WEqProjCo}}(a) \) iff \(P \) is an element of \(\text{EC}_{\text{SetProjCo}}(a) \).

(35) Let \(p \) be a prime number, \(a, b \) be elements of \(\text{GF}(p) \), and \(P \) be an element of \(\text{EC}_{\text{SetProjCo}}(a) \). Then \((P_2)^2 \cdot P_3 - ((P_1)^3 + a \cdot P_1 \cdot (P_3)^2 + b \cdot (P_3)^3) = 0_{\text{GF}(p)} \).

Let \(p \) be a prime number and let \(P \) be an element of \(\text{ProjCo}(\text{GF}(p)) \). The represent point of \(P \) yields an element of \(\text{ProjCo}(\text{GF}(p)) \) and is defined by:

(Def. 7)(i) The represent point of \(P = \{P_1 \cdot (P_3)^{-1}, P_2 \cdot (P_3)^{-1}, 1\} \) if \(P_3 \neq 0 \),

(ii) the represent point of \(P = \{0, 1, 0\} \) if \(P_3 = 0 \),

(iii) \(P_3 = 0 \), otherwise.

The following propositions are true:

(36) Let \(p \) be a 5 or greater prime number, \(z \) be an element of the parameters of elliptic curve \(p \), and \(P \) be an element of \(\text{EC}_{\text{SetProjCo}}(z_1) \). Then the represent point of \(P \equiv P \) and the represent point of \(P \in \text{EC}_{\text{SetProjCo}}(z_1) \).

(37) Let \(p \) be a prime number, \(a, b \) be elements of \(\text{GF}(p) \), and \(P \) be an element of \(\text{ProjCo}(\text{GF}(p)) \). Suppose \((\text{the represent point of } P)_3 = 0 \). Then the represent point of \(P = \{0, 1, 0\} \) and \(P_3 = 0 \).

(38) Let \(p \) be a prime number, \(a, b \) be elements of \(\text{GF}(p) \), and \(P \) be an element of \(\text{ProjCo}(\text{GF}(p)) \). Suppose \((\text{the represent point of } P)_3 \neq 0 \). Then the represent point of \(P = \{P_1 \cdot (P_3)^{-1}, P_2 \cdot (P_3)^{-1}, 1\} \) and \(P_3 \neq 0 \).

(39) Let \(p \) be a 5 or greater prime number, \(z \) be an element of the parameters of elliptic curve \(p \), and \(P, Q \) be elements of \(\text{EC}_{\text{SetProjCo}}(z_1) \). Then \(P \equiv Q \) if and only if the represent point of \(P \equiv \text{the represent point of } Q \).
3. Operations of Points on an Elliptic Curve over \(\text{GF}(p) \)

Let \(p \) be a 5 or greater prime number and let \(z \) be an element of the parameters of elliptic curve \(p \). The functor \(\text{compell}_{\text{ProjCo}}(z, p) \) yields a function from \(\text{EC}_{\text{SetProjCo}}(z_1) \) into \(\text{EC}_{\text{SetProjCo}}(z_1) \) and is defined as follows:

(Def. 8) For every element \(P \) of \(\text{EC}_{\text{SetProjCo}}(z_1) \) holds \((\text{compell}_{\text{ProjCo}}(z, p))(P) = \langle P_1, -P_2, P_3 \rangle \).

Let \(p \) be a 5 or greater prime number, let \(z \) be an element of the parameters of elliptic curve \(p \), let \(F \) be a function from \(\text{EC}_{\text{SetProjCo}}(z_1) \) into \(\text{EC}_{\text{SetProjCo}}(z_1) \), and let \(P \) be an element of \(\text{EC}_{\text{SetProjCo}}(z_1) \). Then \(F(P) \) is an element of \(\text{EC}_{\text{SetProjCo}}(z_1) \).

We now state a number of propositions:

(40) Let \(p \) be a 5 or greater prime number, \(z \) be an element of the parameters of elliptic curve \(p \), and \(O \) be an element of \(\text{EC}_{\text{SetProjCo}}(z_1) \). If \(O = \langle 0, 1, 0 \rangle \), then \((\text{compell}_{\text{ProjCo}}(z, p))(O) \equiv O \).

(41) Let \(p \) be a 5 or greater prime number, \(z \) be an element of the parameters of elliptic curve \(p \), and \(P \) be an element of \(\text{EC}_{\text{SetProjCo}}(z_1) \). Then

\[
(\text{compell}_{\text{ProjCo}}(z, p))(\langle\text{compell}_{\text{ProjCo}}(z, p)(P)\rangle) = P.
\]

(42) Let \(p \) be a 5 or greater prime number, \(z \) be an element of the parameters of elliptic curve \(p \), and \(P \) be an element of \(\text{EC}_{\text{SetProjCo}}(z_1) \). Suppose \(P_3 \neq 0 \). Then the represent point of \((\text{compell}_{\text{ProjCo}}(z, p))(P) = (\text{compell}_{\text{ProjCo}}(z, p))(\text{the represent point of } P) \).

(43) Let \(p \) be a 5 or greater prime number, \(z \) be an element of the parameters of elliptic curve \(p \), and \(P, Q \) be elements of \(\text{EC}_{\text{SetProjCo}}(z_1) \). Then \(P = Q \) if and only if \((\text{compell}_{\text{ProjCo}}(z, p))(P) = (\text{compell}_{\text{ProjCo}}(z, p))(Q) \).

(44) Let \(p \) be a 5 or greater prime number, \(z \) be an element of the parameters of elliptic curve \(p \), and \(P \) be an element of \(\text{EC}_{\text{SetProjCo}}(z_1) \). If \(P_3 \neq 0 \), then \(P \equiv (\text{compell}_{\text{ProjCo}}(z, p))(P) \) iff \(P_2 = 0 \).

(45) Let \(p \) be a 5 or greater prime number, \(z \) be an element of the parameters of elliptic curve \(p \), and \(P, Q \) be elements of \(\text{EC}_{\text{SetProjCo}}(z_1) \). If \(P_3 \neq 0 \), then \(P_1 = Q_1 \) and \(P_3 = Q_3 \) iff \(P = Q \) or \(P = (\text{compell}_{\text{ProjCo}}(z, p))(Q) \).

(46) Let \(p \) be a 5 or greater prime number, \(z \) be an element of the parameters of elliptic curve \(p \), and \(P, Q \) be elements of \(\text{EC}_{\text{SetProjCo}}(z_1) \). Then \(P \equiv Q \) if and only if \((\text{compell}_{\text{ProjCo}}(z, p))(P) \equiv (\text{compell}_{\text{ProjCo}}(z, p))(Q) \).

(47) Let \(p \) be a 5 or greater prime number, \(z \) be an element of the parameters of elliptic curve \(p \), and \(P, Q \) be elements of \(\text{EC}_{\text{SetProjCo}}(z_1) \). Then \(P \equiv (\text{compell}_{\text{ProjCo}}(z, p))(Q) \) if and only if \((\text{compell}_{\text{ProjCo}}(z, p))(P) \equiv Q \).

(48) Let \(p \) be a 5 or greater prime number, \(z \) be an element of the parameters of elliptic curve \(p \), and \(P, Q \) be elements of \(\text{EC}_{\text{SetProjCo}}(z_1) \). Suppose \(P_3 \neq 0 \) and \(Q_3 \neq 0 \). Then the represent point of \(P = (\text{compell}_{\text{ProjCo}}(z, p))(the
represent point of Q) if and only if $P \equiv (\text{compell}_{\text{projCo}}(z, p))(Q)$.

(49) Let p be a 5 or greater prime number, z be an element of the parameters of elliptic curve p, and P, Q be elements of $\text{EC}_{\text{SetProjCo}}(z_1)$. If $P \equiv Q$, then $P_2 \cdot Q_3 = Q_2 \cdot P_3$.

(50) Let p be a 5 or greater prime number, z be an element of the parameters of elliptic curve p, and P, Q be elements of $\text{EC}_{\text{SetProjCo}}(z_1)$. Suppose $P_3 \neq 0$ and $Q_3 \neq 0$. Then $P \equiv Q$ or $P \equiv (\text{compell}_{\text{projCo}}(z, p))(Q)$ if and only if $P_1 \cdot Q_3 = Q_1 \cdot P_3$.

(51) Let p be a 5 or greater prime number, z be an element of the parameters of elliptic curve p, and P, Q be elements of $\text{EC}_{\text{SetProjCo}}(z_1)$. If $P_3 \neq 0$ and $Q_3 \neq 0$ and $P_2 \neq 0$, then if $P \equiv (\text{compell}_{\text{projCo}}(z, p))(Q)$, then $P_2 \cdot Q_3 \neq Q_2 \cdot P_3$.

(52) Let p be a 5 or greater prime number, z be an element of the parameters of elliptic curve p, and P, Q be elements of $\text{EC}_{\text{SetProjCo}}(z_1)$. If $P \equiv Q$ and $P \equiv (\text{compell}_{\text{projCo}}(z, p))(Q)$, then $P_2 \cdot Q_3 \neq Q_2 \cdot P_3$.

(53) Let p be a 5 or greater prime number, z be an element of the parameters of elliptic curve p, g_5 be an element of $\text{GF}(p)$, and P be an element of $\text{EC}_{\text{SetProjCo}}(z_1)$. If $g_5 = 3 \mod p$ and $P_2 = 0$ and $P_3 \neq 0$, then $z_1 \cdot (P_3)^2 + g_5 \cdot (P_1)^2 \neq 0$.

(54) Let p be a 5 or greater prime number, z be an element of the parameters of elliptic curve p, g_4, g_6, g_7, g_8 be elements of $\text{GF}(p)$, P, Q be elements of $\text{EC}_{\text{SetProjCo}}(z_1)$, and R be an element of $(\text{the carrier of } \text{GF}(p)) \times (\text{the carrier of } \text{GF}(p))$. Suppose that

(i) $g_4 = 2 \mod p$,
(ii) $g_6 = Q_2 \cdot P_3 - P_2 \cdot Q_3$,
(iii) $g_7 = Q_1 \cdot P_3 - P_1 \cdot Q_3$,
(iv) $g_8 = g_6^2 \cdot P_3 \cdot Q_3 - g_7^3 - g_4 \cdot g_7^2 \cdot P_1 \cdot Q_3$, and
(v) \(R = (g_7 \cdot g_8, g_6 \cdot (g_7^2 \cdot P_1 \cdot Q_3 - g_8) - g_7^3 \cdot P_2 \cdot Q_3, g_7^3 \cdot P_3 \cdot Q_3) \).

Then $g_7 \cdot P_3 \cdot R_2 = -(g_6 \cdot (R_1 \cdot P_3 - P_1 \cdot R_3) + g_7 \cdot P_2 \cdot R_3)$.

(55) Let p be a 5 or greater prime number, z be an element of the parameters of elliptic curve p, g_4, g_6, g_7, g_8 be elements of $\text{GF}(p)$, P, Q be elements of $\text{EC}_{\text{SetProjCo}}(z_1)$, and R be an element of $(\text{the carrier of } \text{GF}(p)) \times (\text{the carrier of } \text{GF}(p))$. Suppose that

(i) $g_4 = 2 \mod p$,
(ii) $g_6 = Q_2 \cdot P_3 - P_2 \cdot Q_3$,
(iii) $g_7 = Q_1 \cdot P_3 - P_1 \cdot Q_3$,
(iv) $g_8 = g_6^2 \cdot P_3 \cdot Q_3 - g_7^3 - g_4 \cdot g_7^2 \cdot P_1 \cdot Q_3$, and
(v) \(R = (g_7 \cdot g_8, g_6 \cdot (g_7^2 \cdot P_1 \cdot Q_3 - g_8) - g_7^3 \cdot P_2 \cdot Q_3, g_7^3 \cdot P_3 \cdot Q_3) \).

Then $-g_7^2 \cdot (P_3 \cdot Q_3 \cdot R_1 + P_3 \cdot Q_1 \cdot R_3 + P_1 \cdot Q_3 \cdot R_3) + P_3 \cdot Q_3 \cdot R_3 \cdot g_6^2 = 0_{\text{GF}(p)}$.

(56) Let p be a 5 or greater prime number, z be an element of the parameters of elliptic curve p, g_1, g_6, g_7, g_8 be elements of $GF(p)$, P, Q be elements of $EC_{SetProjCo}(z_1)$, and R be an element of $(\text{the carrier of } GF(p)) \times (\text{the carrier of } GF(p))$. Suppose that

(i) $g_1 = 2 \mod p$,
(ii) $g_6 = Q_2 \cdot P_3 - P_2 \cdot Q_3$,
(iii) $g_7 = Q_1 \cdot P_3 - P_1 \cdot Q_3$,
(iv) $g_8 = g_6^2 \cdot P_3 \cdot Q_3 - g_7^3 - g_4 \cdot g_7^2 \cdot P_1 \cdot Q_3$, and
(v) $R = \langle g_7 \cdot g_8, g_6 \cdot (g_7^2 \cdot P_1 \cdot Q_3 - g_8) - g_7^3 \cdot P_2 \cdot Q_3, g_7^3 \cdot P_3 \cdot Q_3 \rangle$.

Then $z_2 \cdot g_7^2 \cdot (P_3)^2 \cdot Q_3 \cdot R_3 = -g_7^2 \cdot P_3 \cdot P_1 \cdot Q_1 \cdot R_1 + (g_7 \cdot P_2 - g_6 \cdot P_1)^2 \cdot Q_3 \cdot R_3$.

(57) Let p be a 5 or greater prime number, z be an element of the parameters of elliptic curve p, g_1, g_6, g_7, g_8 be elements of $GF(p)$, P, Q be elements of $EC_{SetProjCo}(z_1)$, and R be an element of $(\text{the carrier of } GF(p)) \times (\text{the carrier of } GF(p))$. Suppose that

(i) $g_1 = 2 \mod p$,
(ii) $g_6 = Q_2 \cdot P_3 - P_2 \cdot Q_3$,
(iii) $g_7 = Q_1 \cdot P_3 - P_1 \cdot Q_3$,
(iv) $g_8 = g_6^2 \cdot P_3 \cdot Q_3 - g_7^3 - g_4 \cdot g_7^2 \cdot P_1 \cdot Q_3$, and
(v) $R = \langle g_7 \cdot g_8, g_6 \cdot (g_7^2 \cdot P_1 \cdot Q_3 - g_8) - g_7^3 \cdot P_2 \cdot Q_3, g_7^3 \cdot P_3 \cdot Q_3 \rangle$.

Then $z_1 \cdot g_7^2 \cdot P_3 \cdot Q_3 \cdot R_3 = g_7^2 \cdot (P_1 \cdot Q_1 \cdot R_3 + P_3 \cdot Q_1 \cdot R_1 + P_1 \cdot Q_3 \cdot R_1) + g_4 \cdot g_6 \cdot Q_3 \cdot R_3 \cdot (g_7 \cdot P_2 - g_6 \cdot P_1)$.

(58) Let p be a 5 or greater prime number, z be an element of the parameters of elliptic curve p, g_1, g_6, g_7, g_8 be elements of $GF(p)$, P, Q be elements of $EC_{SetProjCo}(z_1)$, and R be an element of $(\text{the carrier of } GF(p)) \times (\text{the carrier of } GF(p))$. Suppose that

(i) $g_1 = 2 \mod p$,
(ii) $g_6 = Q_2 \cdot P_3 - P_2 \cdot Q_3$,
(iii) $g_7 = Q_1 \cdot P_3 - P_1 \cdot Q_3$,
(iv) $g_8 = g_6^2 \cdot P_3 \cdot Q_3 - g_7^3 - g_4 \cdot g_7^2 \cdot P_1 \cdot Q_3$, and
(v) $R = \langle g_7 \cdot g_8, g_6 \cdot (g_7^2 \cdot P_1 \cdot Q_3 - g_8) - g_7^3 \cdot P_2 \cdot Q_3, g_7^3 \cdot P_3 \cdot Q_3 \rangle$.

Then $g_7^2 \cdot (P_3)^2 \cdot Q_3 \cdot ((R_2)^2 \cdot R_3 - ((R_1)^3 + z_1 \cdot R_1 \cdot (R_3)^2 + z_2 \cdot (R_3)^3)) = 0_{GF(p)}$.

(59) Let p be a 5 or greater prime number, z be an element of the parameters of elliptic curve p, g_1, g_5, g_11, g_9, g_6, g_7, g_8, g_{10} be elements of $GF(p)$, P be an element of $EC_{SetProjCo}(z_1)$, and R be an element of $(\text{the carrier of } GF(p)) \times (\text{the carrier of } GF(p)) \times (\text{the carrier of } GF(p))$. Suppose that $g_4 = 2 \mod p$ and $g_5 = 3 \mod p$ and $g_{11} = 4 \mod p$ and $g_9 = 8 \mod p$ and $g_6 = z_1 \cdot (P_3)^2 + g_5 \cdot (P_1)^2$ and $g_7 = P_2 \cdot P_3$ and $g_8 = P_1 \cdot P_2 \cdot g_7$ and $g_{10} = g_6^2 - g_9 \cdot g_8$ and $R = \langle g_4 \cdot g_{10} \cdot g_7, g_6 \cdot (g_{11} \cdot g_8 - g_{10}) - g_9 \cdot (P_2)^2 \cdot g_7^2, g_9 \cdot g_7^3 \rangle$. Then $g_4 \cdot g_7 \cdot P_3 \cdot R_2 = -(g_6 \cdot (P_3 \cdot R_1 - P_1 \cdot R_3) + g_4 \cdot g_7 \cdot P_2 \cdot R_3)$.

Let p be a 5 or greater prime number, z be an element of the parameters of elliptic curve p, g_4, g_5, g_{11}, g_9, g_6, g_7, g_8, g_{10} be elements of $\text{GF}(p)$, P be an element of $\text{EC}_{\text{SetProjCo}}(z_1)$, and R be an element of $(\text{the carrier of } \text{GF}(p)) \times (\text{the carrier of } \text{GF}(p)) \times (\text{the carrier of } \text{GF}(p))$. Suppose that $g_4 = 2 \mod p$ and $g_5 = 3 \mod p$ and $g_{11} = 4 \mod p$ and $g_9 = 8 \mod p$ and $g_6 = z_1 \cdot (P_3)^2 + g_5 \cdot (P_1)^2$ and $g_7 = P_2 \cdot P_3$ and $g_8 = P_1 \cdot P_2 \cdot g_7$ and $g_{10} = g_2 \cdot g_9 \cdot g_8$ and $R = \langle g_4 \cdot g_{10} \cdot g_7, g_6 \cdot (g_{11} \cdot g_8 - g_{10}) - g_9 \cdot (P_2)^2 \cdot g_7^2, g_9 \cdot g_7^3 \rangle$. Then $g_{11} \cdot g_7^2 \cdot P_3 \cdot R_1 = R_3 \cdot (g_4 \cdot g_7 \cdot P_2 - g_6 \cdot P_3)^2 - g_{11} \cdot g_7^2 \cdot (P_1)^2 \cdot R_1$.

Let p be a 5 or greater prime number, z be an element of the parameters of elliptic curve p, g_4, g_5, g_{11}, g_9, g_6, g_7, g_8, g_{10} be elements of $\text{GF}(p)$, P be an element of $\text{EC}_{\text{SetProjCo}}(z_1)$, and R be an element of $(\text{the carrier of } \text{GF}(p)) \times (\text{the carrier of } \text{GF}(p)) \times (\text{the carrier of } \text{GF}(p))$. Suppose that $g_4 = 2 \mod p$ and $g_5 = 3 \mod p$ and $g_{11} = 4 \mod p$ and $g_9 = 8 \mod p$ and $g_6 = z_1 \cdot (P_3)^2 + g_5 \cdot (P_1)^2$ and $g_7 = P_2 \cdot P_3$ and $g_8 = P_1 \cdot P_2 \cdot g_7$ and $g_{10} = g_2 \cdot g_9 \cdot g_8$ and $R = \langle g_4 \cdot g_{10} \cdot g_7, g_6 \cdot (g_{11} \cdot g_8 - g_{10}) - g_9 \cdot (P_2)^2 \cdot g_7^2, g_9 \cdot g_7^3 \rangle$. Then $g_{11} \cdot g_7^2 \cdot (P_3)^2 \cdot (z_2 \cdot R_3) = R_3 \cdot (g_4 \cdot g_7 \cdot P_2 - g_6 \cdot P_3)^2 - g_{11} \cdot g_7^2 \cdot (P_1)^2 \cdot R_3$.

Let p be a 5 or greater prime number, z be an element of the parameters of elliptic curve p, g_4, g_5, g_{11}, g_9, g_6, g_7, g_8, g_{10} be elements of $\text{GF}(p)$, P be an element of $\text{EC}_{\text{SetProjCo}}(z_1)$, and R be an element of $(\text{the carrier of } \text{GF}(p)) \times (\text{the carrier of } \text{GF}(p)) \times (\text{the carrier of } \text{GF}(p))$. Suppose that $g_4 = 2 \mod p$ and $g_5 = 3 \mod p$ and $g_{11} = 4 \mod p$ and $g_9 = 8 \mod p$ and $g_6 = z_1 \cdot (P_3)^2 + g_5 \cdot (P_1)^2$ and $g_7 = P_2 \cdot P_3$ and $g_8 = P_1 \cdot P_2 \cdot g_7$ and $g_{10} = g_2 \cdot g_9 \cdot g_8$ and $R = \langle g_4 \cdot g_{10} \cdot g_7, g_6 \cdot (g_{11} \cdot g_8 - g_{10}) - g_9 \cdot (P_2)^2 \cdot g_7^2, g_9 \cdot g_7^3 \rangle$. Then $g_{11} \cdot g_7^2 \cdot (P_3)^2 \cdot (z_1 \cdot R_3) = g_6 \cdot P_3 \cdot R_3 = (g_4 \cdot g_7 \cdot P_2 - g_6 \cdot P_3)^2 + (g_1 \cdot P_1 \cdot P_3 \cdot R_1 + g_{11} \cdot (P_1)^2 \cdot R_3)$.

Let p be a 5 or greater prime number and let z be an element of the parameters of elliptic curve p. The functor $\text{addell} \circ \text{ProjCo}(z, p)$ yields a function from $\text{EC}_{\text{SetProjCo}}(z_1) \times \text{EC}_{\text{SetProjCo}}(z_1)$ into $\text{EC}_{\text{SetProjCo}}(z_1)$ and is defined by the condition (Def. 9).

(Def. 9) Let P, Q, O be elements of $\text{EC}_{\text{SetProjCo}}(z_1)$ such that $O = \{0, 1, 0\}$. Then

(i) if $P \equiv O$, then $\text{addell} \circ \text{ProjCo}(z, p)(P, Q) = Q$,

(ii) if $Q \equiv O$ and $P \neq O$, then $\text{addell} \circ \text{ProjCo}(z, p)(P, Q) = P$.

(iii) if $P \neq O$ and $Q \neq O$ and $P \neq Q$, then for all elements g_4, g_6, g_7, g_8 of $GF(p)$ such that $g_4 = 2 \mod p$ and $g_6 = Q_2 \cdot P_3 - P_2 \cdot Q_3$ and $g_7 = Q_1 \cdot P_3 - P_1 \cdot Q_3$ and $g_8 = g_6^2 \cdot P_3 \cdot Q_3 - g_7^3 - g_4 \cdot g_7^2 \cdot P_1 \cdot Q_3$ holds

$\text{addell}_{\text{SetProjCo}}(z, p))(P, Q) = \langle g_7 \cdot g_8, g_6 \cdot (g_7^2 \cdot P_1 \cdot Q_3 - g_8) - g_7^3 \cdot P_2 \cdot Q_3, g_7^3 \cdot P_3 \cdot Q_3 \rangle$, and

(iv) if $P \neq O$ and $Q \neq O$ and $P = Q$, then for all elements $g_4, g_5, g_{11}, g_9, g_6, g_7, g_8, g_{10}$ of $GF(p)$ such that $g_4 = 2 \mod p$ and $g_5 = 3 \mod p$ and $g_{11} = 4 \mod p$ and $g_9 = 8 \mod p$ and $g_6 = z_1 \cdot (P_3)^2 + g_5 \cdot (P_1)^2$ and $g_7 = P_2 \cdot P_3$ and $g_8 = P_1 \cdot P_2 \cdot g_7$ and $g_{10} = g_6^2 - g_9 \cdot g_8$ holds

$\text{addell}_{\text{SetProjCo}}(z, p))(P, Q) = \langle g_4 \cdot g_{10} \cdot g_7, g_6 \cdot (g_{11} \cdot g_8 - g_{10}) - g_9 \cdot (P_2)^2 \cdot g_7^2, g_9 \cdot g_9 \rangle$.

Let p be a 5 or greater prime number, let z be an element of the parameters of elliptic curve p, let F be a function from $\text{EC}_{\text{SetProjCo}}(z_1) \times \text{EC}_{\text{SetProjCo}}(z_1)$ into $\text{EC}_{\text{SetProjCo}}(z_1)$, and let Q, R be elements of $\text{EC}_{\text{SetProjCo}}(z_1)$. Then $F(Q, R)$ is an element of $\text{EC}_{\text{SetProjCo}}(z_1)$.

References

Received November 3, 2011