REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/3626
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorRiccardi, Marco-
dc.date.accessioned2015-12-06T19:05:19Z-
dc.date.available2015-12-06T19:05:19Z-
dc.date.issued2012-
dc.identifier.citationFormalized Mathematics, Volume 20, Issue 1, 2012, Pages 41-45-
dc.identifier.issn1426-2630-
dc.identifier.issn1898-9934-
dc.identifier.urihttp://hdl.handle.net/11320/3626-
dc.description.abstractThe goal of this article is to show some examples of topological manifolds: planes and spheres in Euclidean space. In doing it, the article introduces the stereographic projection [25].-
dc.language.isoen-
dc.publisherDe Gruyter Open-
dc.titlePlanes and Spheres as Topological Manifolds. Stereographic Projection-
dc.typeArticle-
dc.identifier.doi10.2478/v10037-012-0006-0-
dc.description.AffiliationVia del Pero 102, 54038 Montignoso, Italy-
dc.description.referencesGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.-
dc.description.referencesGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.-
dc.description.referencesGrzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.-
dc.description.referencesGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.-
dc.description.referencesGrzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.-
dc.description.referencesGrzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.-
dc.description.referencesCzesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.-
dc.description.referencesCzesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.-
dc.description.referencesCzesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.-
dc.description.referencesCzesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.-
dc.description.referencesCzesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.-
dc.description.referencesCzesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.-
dc.description.referencesCzesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.-
dc.description.referencesAgata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.-
dc.description.referencesAgata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.-
dc.description.referencesAgata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.-
dc.description.referencesAgata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.-
dc.description.referencesKrzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.-
dc.description.referencesKatarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.-
dc.description.referencesStanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.-
dc.description.referencesArtur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in En/T Formalized Mathematics, 12(3):301-306, 2004.-
dc.description.referencesArtur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117-124, 2005.-
dc.description.referencesJarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.-
dc.description.referencesEugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.-
dc.description.referencesJohn M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000.-
dc.description.referencesRobert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.-
dc.description.referencesYatsuka Nakamura, Artur Korniłowicz, Nagato Oya, and Yasunari Shidama. The real vector spaces of finite sequences are finite dimensional. Formalized Mathematics, 17(1):1-9, 2009, doi:10.2478/v10037-009-0001-2.-
dc.description.referencesHenryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.-
dc.description.referencesBeata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.-
dc.description.referencesBeata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.-
dc.description.referencesBeata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.-
dc.description.referencesKarol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.-
dc.description.referencesMarco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1):41-44, 2011, doi: 10.2478/v10037-011-0007-4.-
dc.description.referencesAndrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.-
dc.description.referencesAndrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.-
dc.description.referencesWojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.-
dc.description.referencesWojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.-
dc.description.referencesWojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.-
dc.description.referencesWojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.-
dc.description.referencesEdmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.-
dc.description.referencesEdmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.-
dc.description.referencesMariusz Żynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics, 5(1):75-77, 1996.-
Występuje w kolekcji(ach):Formalized Mathematics, 2012, Volume 20, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
v10037-012-0006-0.pdf290,38 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons