

# Planes and Spheres as Topological Manifolds. Stereographic Projection

Marco Riccardi Via del Pero 102 54038 Montignoso Italy

**Summary.** The goal of this article is to show some examples of topological manifolds: planes and spheres in Euclidean space. In doing it, the article introduces the stereographic projection [25].

MML identifier: MFOLD\_2, version: 7.12.01 4.167.1133

The papers [29], [34], [9], [14], [40], [41], [11], [10], [4], [2], [18], [13], [31], [20], [21], [30], [32], [16], [17], [35], [26], [1], [22], [38], [36], [24], [19], [37], [28], [6], [15], [8], [27], [39], [3], [42], [12], [23], [7], [5], and [33] provide the notation and terminology for this paper.

### 1. Preliminaries

Let us observe that  $\emptyset$  is  $\emptyset$ -valued and  $\emptyset$  is onto. Next we state three propositions:

- (1) For every function f and for every set Y holds  $\operatorname{dom}(Y \upharpoonright f) = f^{-1}(Y)$ .
- (2) For every function f and for all sets  $Y_1$ ,  $Y_2$  such that  $Y_2 \subseteq Y_1$  holds  $(Y_1 \upharpoonright f)^{-1}(Y_2) = f^{-1}(Y_2).$
- (3) Let S, T be topological structures and f be a function from S into T. If f is homeomorphism, then  $f^{-1}$  is homeomorphism.

Let S, T be topological structures. Let us note that the predicate S and T are homeomorphic is symmetric.

For simplicity, we use the following convention:  $T_1$ ,  $T_2$ ,  $T_3$  denote topological spaces,  $A_1$  denotes a subset of  $T_1$ ,  $A_2$  denotes a subset of  $T_2$ , and  $A_3$  denotes a subset of  $T_3$ .

C 2012 University of Białystok CC-BY-SA License ver. 3.0 or later ISSN 1426-2630(p), 1898-9934(e) Next we state several propositions:

- (4) Let f be a function from  $T_1$  into  $T_2$ . Suppose f is homeomorphism. Let g be a function from  $T_1 \upharpoonright f^{-1}(A_2)$  into  $T_2 \upharpoonright A_2$ . If  $g = A_2 \upharpoonright f$ , then g is homeomorphism.
- (5) For every function f from  $T_1$  into  $T_2$  such that f is homeomorphism holds  $f^{-1}(A_2)$  and  $A_2$  are homeomorphic.
- (6) If  $A_1$  and  $A_2$  are homeomorphic, then  $A_2$  and  $A_1$  are homeomorphic.
- (7) If  $A_1$  and  $A_2$  are homeomorphic, then  $A_1$  is empty iff  $A_2$  is empty.
- (8) If  $A_1$  and  $A_2$  are homeomorphic and  $A_2$  and  $A_3$  are homeomorphic, then  $A_1$  and  $A_3$  are homeomorphic.
- (9) If  $T_1$  is second-countable and  $T_1$  and  $T_2$  are homeomorphic, then  $T_2$  is second-countable.

In the sequel n, k are natural numbers and M, N are non empty topological spaces.

The following propositions are true:

- (10) If M is Hausdorff and M and N are homeomorphic, then N is Hausdorff.
- (11) If M is *n*-locally Euclidean and M and N are homeomorphic, then N is *n*-locally Euclidean.
- (12) If M is *n*-manifold and M and N are homeomorphic, then N is *n*-manifold.
- (13) Let  $x_1, x_2$  be finite sequences of elements of  $\mathbb{R}$  and i be an element of  $\mathbb{N}$ . If  $i \in \operatorname{dom}(x_1 \bullet x_2)$ , then  $(x_1 \bullet x_2)(i) = (x_1)_i \cdot (x_2)_i$  and  $(x_1 \bullet x_2)_i = (x_1)_i \cdot (x_2)_i$ .
- (14) For all finite sequences  $x_1, x_2, y_1, y_2$  of elements of  $\mathbb{R}$  such that  $\operatorname{len} x_1 = \operatorname{len} x_2$  and  $\operatorname{len} y_1 = \operatorname{len} y_2$  holds  $x_1 \cap y_1 \bullet x_2 \cap y_2 = (x_1 \bullet x_2) \cap (y_1 \bullet y_2)$ .
- (15) For all finite sequences  $x_1, x_2, y_1, y_2$  of elements of  $\mathbb{R}$  such that  $\ln x_1 = \ln x_2$  and  $\ln y_1 = \ln y_2$  holds  $|(x_1 \cap y_1, x_2 \cap y_2)| = |(x_1, x_2)| + |(y_1, y_2)|$ .

In the sequel  $p, q, p_1$  are points of  $\mathcal{E}^n_{\mathrm{T}}$  and r is a real number.

One can prove the following propositions:

- (16) If  $k \in \text{Seg } n$ , then  $(p_1 + p_2)(k) = p_1(k) + p_2(k)$ .
- (17) For every set X holds X is a linear combination of  $\mathbb{R}^{\operatorname{Seg} n}_{\mathbb{R}}$  iff X is a linear combination of  $\mathcal{E}^{n}_{\mathbb{T}}$ .
- (18) Let F be a finite sequence of elements of  $\mathcal{E}_{\mathrm{T}}^{n}$ ,  $f_{1}$  be a function from  $\mathcal{E}_{\mathrm{T}}^{n}$  into  $\mathbb{R}$ ,  $F_{1}$  be a finite sequence of elements of  $\mathbb{R}_{\mathbb{R}}^{\mathrm{Seg}\,n}$ , and  $f_{2}$  be a function from  $\mathbb{R}_{\mathbb{R}}^{\mathrm{Seg}\,n}$  into  $\mathbb{R}$ . If  $f_{1} = f_{2}$  and  $F = F_{1}$ , then  $f_{1} \cdot F = f_{2} \cdot F_{1}$ .
- (19) Let F be a finite sequence of elements of  $\mathcal{E}_{\mathrm{T}}^{n}$  and  $F_{1}$  be a finite sequence of elements of  $\mathbb{R}_{\mathbb{R}}^{\mathrm{Seg}\,n}$ . If  $F_{1} = F$ , then  $\sum F = \sum F_{1}$ .
- (20) For every linear combination  $L_2$  of  $\mathbb{R}^{\operatorname{Seg} n}_{\mathbb{R}}$  and for every linear combination  $L_1$  of  $\mathcal{E}^n_{\mathbb{T}}$  such that  $L_1 = L_2$  holds  $\sum L_1 = \sum L_2$ .

42

- (21) Let  $A_4$  be a subset of  $\mathbb{R}^{\text{Seg }n}_{\mathbb{R}}$  and  $A_5$  be a subset of  $\mathcal{E}^n_{\text{T}}$ . Suppose  $A_4 = A_5$ . Then  $A_4$  is linearly independent if and only if  $A_5$  is linearly independent.
- (22) For every subset V of  $\mathcal{E}^n_T$  such that  $V = \mathbb{R}N$ -Base n there exists a linear combination l of V such that  $p = \sum l$ .
- (23)  $\mathbb{R}$ N-Base *n* is a basis of  $\mathcal{E}_{T}^{n}$ .
- (24) Let V be a subset of  $\mathcal{E}_{\mathrm{T}}^n$ . Then  $V \in$  the topology of  $\mathcal{E}_{\mathrm{T}}^n$  if and only if for every p such that  $p \in V$  there exists r such that r > 0 and  $\mathrm{Ball}(p, r) \subseteq V$ .

Let n be a natural number and let p be a point of  $\mathcal{E}_{\mathrm{T}}^n$ .

The functor InnerProduct p yields a function from  $\mathcal{E}^n_{\mathrm{T}}$  into  $\mathbb{R}^1$  and is defined by:

(Def. 1) For every point q of  $\mathcal{E}^n_{\mathrm{T}}$  holds (InnerProduct p)(q) = |(p,q)|.

Let us consider n, p. Note that InnerProduct p is continuous.

## 2. Planes

Let us consider n and let us consider p, q. The functor Plane(p,q) yielding a subset of  $\mathcal{E}^n_T$  is defined as follows:

- (Def. 2) Plane $(p,q) = \{y; y \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^{n} \colon |(p,y-q)| = 0\}.$ The following propositions are true:
  - (25)  $(\operatorname{transl}(p_1, \mathcal{E}_T^n))^{\circ} \operatorname{Plane}(p, p_2) = \operatorname{Plane}(p, p_1 + p_2).$
  - (26) If  $p \neq 0_{\mathcal{E}_{\mathrm{T}}^n}$ , then there exists a linearly independent subset A of  $\mathcal{E}_{\mathrm{T}}^n$  such that  $\overline{\overline{A}} = n 1$  and  $\Omega_{\mathrm{Lin}(A)} = \mathrm{Plane}(p, 0_{\mathcal{E}_{\mathrm{T}}^n})$ .
  - (27) If  $p_1 \neq 0_{\mathcal{E}^n_{\mathrm{T}}}$  and  $p_2 \neq 0_{\mathcal{E}^n_{\mathrm{T}}}$ , then there exists a function R from  $\mathcal{E}^n_{\mathrm{T}}$  into  $\mathcal{E}^n_{\mathrm{T}}$  such that R is homeomorphism and  $R^{\circ} \operatorname{Plane}(p_1, 0_{\mathcal{E}^n_{\mathrm{T}}}) = \operatorname{Plane}(p_2, 0_{\mathcal{E}^n_{\mathrm{T}}})$ .

Let us consider n and let us consider p, q. The functor TPlane(p,q) yields a non empty subspace of  $\mathcal{E}^n_{\text{T}}$  and is defined by:

(Def. 3) TPlane $(p,q) = \mathcal{E}_{\mathrm{T}}^n \upharpoonright \mathrm{Plane}(p,q).$ 

The following three propositions are true:

- (28) The base finite sequence of n + 1 and  $n + 1 = (0_{\mathcal{E}^n_T}) \cap \langle 1 \rangle$ .
- (29) For all points p, q of  $\mathcal{E}_{\mathrm{T}}^{n+1}$  such that  $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{n+1}}$  holds  $\mathcal{E}_{\mathrm{T}}^{n}$  and  $\mathrm{TPlane}(p,q)$  are homeomorphic.
- (30) For all points p, q of  $\mathcal{E}_{\mathrm{T}}^{n+1}$  such that  $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{n+1}}$  holds  $\mathrm{TPlane}(p,q)$  is *n*-manifold.

#### MARCO RICCARDI

#### 3. Spheres

Let us consider n. The functor  $\mathbb{S}^n$  yields a topological space and is defined by:

(Def. 4)  $\mathbb{S}^n = \text{TopUnitCircle}(n+1).$ 

Let us consider n. Note that  $\mathbb{S}^n$  is non empty.

Let us consider n, p and let S be a subspace of  $\mathcal{E}_{\mathrm{T}}^{n}$ . Let us assume that  $p \in$ Sphere( $(0_{\mathcal{E}_{\mathrm{T}}^{n}}), 1$ ). The functor  $\sigma_{S,p}$  yielding a function from S into  $\mathrm{TPlane}(p, 0_{\mathcal{E}_{\mathrm{T}}^{n}})$  is defined as follows:

- (Def. 5) For every q such that  $q \in S$  holds  $(\sigma_{S,p})(q) = \frac{1}{1-|(q,p)|} \cdot (q-|(q,p)| \cdot p)$ . Next we state the proposition
  - (31) For every subspace S of  $\mathcal{E}_{\mathrm{T}}^{n}$  such that  $\Omega_{S} = \mathrm{Sphere}((0_{\mathcal{E}_{\mathrm{T}}^{n}}), 1) \setminus \{p\}$  and  $p \in \mathrm{Sphere}((0_{\mathcal{E}_{\mathrm{T}}^{n}}), 1)$  holds  $\sigma_{S,p}$  is homeomorphism.

Let us consider n. One can verify the following observations:

- \*  $\mathbb{S}^n$  is second-countable,
- \*  $\mathbb{S}^n$  is *n*-locally Euclidean, and
- \*  $\mathbb{S}^n$  is *n*-manifold.

#### References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [5] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213–225, 1992.
- [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [13] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [14] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [16] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [17] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [18] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [19] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.

- [20] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [21] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in  $\mathcal{E}_{T}^{n}$ . Formalized Mathematics, 12(3):301–306, 2004.
- [22] Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117–124, 2005.
- [23] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [24] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [25] John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000.
- [26] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285–294, 1998.
- [27] Yatsuka Nakamura, Artur Korniłowicz, Nagato Oya, and Yasunari Shidama. The real vector spaces of finite sequences are finite dimensional. *Formalized Mathematics*, 17(1):1– 9, 2009, doi:10.2478/v10037-009-0001-2.
- [28] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555–561, 1990.
- [29] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [30] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
  [31] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [32] Karol Pak. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201–205, 2009, doi: 10.2478/v10037-009-0024-8.
- [33] Marco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1):41-44, 2011, doi: 10.2478/v10037-011-0007-4.
- [34] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- [35] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341– 347, 2003.
- [36] Wojciech A. Trybulec. Basis of real linear space. *Formalized Mathematics*, 1(5):847–850, 1990.
- [37] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581–588, 1990.
- [38] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297–301, 1990.
- [39] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [40] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [41] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181–186, 1990.
- [42] Mariusz Żynel and Adam Guzowski.  $T_0$  topological spaces. Formalized Mathematics, 5(1):75–77, 1996.

Received June 6, 2011