REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/3625
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorShidama, Yasunari-
dc.date.accessioned2015-12-06T19:05:19Z-
dc.date.available2015-12-06T19:05:19Z-
dc.date.issued2012-
dc.identifier.citationFormalized Mathematics, Volume 20, Issue 1, 2012, Pages 31-40-
dc.identifier.issn1426-2630-
dc.identifier.issn1898-9934-
dc.identifier.urihttp://hdl.handle.net/11320/3625-
dc.description.abstractIn this article, we formalize differentiability of functions on normed linear spaces. Partial derivative, mean value theorem for vector-valued functions, continuous differentiability, etc. are formalized. As it is well known, there is no exact analog of the mean value theorem for vector-valued functions. However a certain type of generalization of the mean value theorem for vector-valued functions is obtained as follows: If ||ƒ'(x + t · h)|| is bounded for t between 0 and 1 by some constant M, then ||ƒ(x + t · h) - ƒ(x)|| ≤ M · ||h||. This theorem is called the mean value theorem for vector-valued functions. By this theorem, the relation between the (total) derivative and the partial derivatives of a function is derived [23].-
dc.language.isoen-
dc.publisherDe Gruyter Open-
dc.titleDifferentiable Functions on Normed Linear Spaces-
dc.typeArticle-
dc.identifier.doi10.2478/v10037-012-0005-1-
dc.description.AffiliationShinshu University, Nagano, Japan-
dc.description.referencesGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.-
dc.description.referencesGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.-
dc.description.referencesGrzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.-
dc.description.referencesGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.-
dc.description.referencesGrzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.-
dc.description.referencesGrzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.-
dc.description.referencesCzesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.-
dc.description.referencesCzesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.-
dc.description.referencesCzesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.-
dc.description.referencesCzesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.-
dc.description.referencesCzesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.-
dc.description.referencesCzesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.-
dc.description.referencesCzesław Byliński. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99-107, 2005.-
dc.description.referencesAgata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.-
dc.description.referencesNoboru Endou, Yasunari Shidama, and Keiichi Miyajima. The product space of real normed spaces and its properties. Formalized Mathematics, 15(3):81-85, 2007, doi:10.2478/v10037-007-0010-y.-
dc.description.referencesHiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. Formalized Mathematics, 12(3):321-327, 2004.-
dc.description.referencesJarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.-
dc.description.referencesAnna Lango and Grzegorz Bancerek. Product of families of groups and vector spaces. Formalized Mathematics, 3(2):235-240, 1992.-
dc.description.referencesHiroyuki Okazaki, Noboru Endou, Keiko Narita, and Yasunari Shidama. Differentiable functions into real normed spaces. Formalized Mathematics, 19(2):69-72, 2011, doi: 10.2478/v10037-011-0012-7.-
dc.description.referencesBeata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.-
dc.description.referencesJan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.-
dc.description.referencesKonrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.-
dc.description.referencesLaurent Schwartz. Cours d'analyse, vol. 1. Hermann Paris, 1967.-
dc.description.referencesYasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.-
dc.description.referencesAndrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.-
dc.description.referencesAndrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.-
dc.description.referencesWojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.-
dc.description.referencesZinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.-
dc.description.referencesEdmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.-
dc.description.referencesEdmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.-
dc.description.referencesHiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.-
Występuje w kolekcji(ach):Formalized Mathematics, 2012, Volume 20, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
v10037-012-0005-1.pdf314,32 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons