Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
Tytuł: Preliminaries to Classical First Order Model Theory
Autorzy: Caminati, Marco
Data wydania: 2011
Data dodania: 6-gru-2015
Wydawca: De Gruyter Open
Źródło: Formalized Mathematics, Volume 19, Issue 3, 2011, Pages 155-167
Abstrakt: First of a series of articles laying down the bases for classical first order model theory. These articles introduce a framework for treating arbitrary languages with equality. This framework is kept as generic and modular as possible: both the language and the derivation rule are introduced as a type, rather than a fixed functor; definitions and results regarding syntax, semantics, interpretations and sequent derivation rules, respectively, are confined to separate articles, to mark out the hierarchy of dependences among different definitions and constructions. As an application limited to countable languages, satisfiability theorem and a full version of the Gödel completeness theorem are delivered, with respect to a fixed, remarkably thrifty, set of correct rules. Besides the self-referential significance for the Mizar project itself of those theorems being formalized with respect to a generic, equality-furnished, countable language, this is the first step to work out other milestones of model theory, such as Lowenheim-Skolem and compactness theorems. Being the receptacle of all results of broader scope stemmed during the various formalizations, this first article stays at a very generic level, with results and registrations about objects already in the Mizar Mathematical Library. Without introducing the Language structure yet, three fundamental definitions of wide applicability are also given: the ‘unambiguous' attribute (see [20], definition on page 5), the functor ‘-multiCat’, which is the iteration of ‘^’ over a FinSequence of FinSequence, and the functor SubstWith, which realizes the substitution of a single symbol inside a generic FinSequence.
Afiliacja: Mathematics Department "G. Castelnuovo", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy
DOI: 10.2478/v10037-011-0025-2
ISSN: 1426-2630
Typ Dokumentu: Article
Występuje w kolekcji(ach):Formalized Mathematics, 2011, Volume 19, Issue 3

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
v10037-011-0025-2.pdf301,12 kBAdobe PDFOtwórz
Pokaż pełny widok rekordu Zobacz statystyki

Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons