REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/3532
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorEndou, Noboru-
dc.contributor.authorOkazaki, Hiroyuki-
dc.contributor.authorShidama, Yasunari-
dc.date.accessioned2015-12-01T19:26:35Z-
dc.date.available2015-12-01T19:26:35Z-
dc.date.issued2009-
dc.identifier.citationFormalized Mathematics, Volume 17, Issue 2, 2009, Pages 157-162-
dc.identifier.issn1426-2630-
dc.identifier.issn1898-9934-
dc.identifier.urihttp://hdl.handle.net/11320/3532-
dc.description.abstractThe authors have presented some articles about Lebesgue type integration theory. In our previous articles [12, 13, 26], we assumed that some σ-additive measure existed and that a function was measurable on that measure. However the existence of such a measure is not trivial. In general, because the construction of a finite additive measure is comparatively easy, to induce a σ-additive measure a finite additive measure is used. This is known as an E. Hopf's extension theorem of measure [15].-
dc.language.isoen-
dc.publisherDe Gruyter Open-
dc.titleHopf Extension Theorem of Measure-
dc.typeArticle-
dc.identifier.doi10.2478/v10037-009-0018-6-
dc.description.AffiliationEndou Noboru - Gifu National College of Technology, Japan-
dc.description.AffiliationOkazaki Hiroyuki - Shinshu University, Nagano, Japan-
dc.description.AffiliationShidama Yasunari - Shinshu University, Nagano, Japan-
dc.description.referencesGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.-
dc.description.referencesGrzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.-
dc.description.referencesJózef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.-
dc.description.referencesJózef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.-
dc.description.referencesJózef Białas. Several properties of the σ-additive measure. Formalized Mathematics, 2(4):493-497, 1991.-
dc.description.referencesJózef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.-
dc.description.referencesJózef Białas. Properties of Caratheodor's measure. Formalized Mathematics, 3(1):67-70, 1992.-
dc.description.referencesCzesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.-
dc.description.referencesCzesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.-
dc.description.referencesCzesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.-
dc.description.referencesCzesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.-
dc.description.referencesNoboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue monotone convergence theorem. Formalized Mathematics, 16(2):167-175, 2008, doi:10.2478/v10037-008-0023-1.-
dc.description.referencesNoboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006, doi:10.2478/v10037-006-0008-x.-
dc.description.referencesAdam Grabowski. On the Kuratowski limit operators. Formalized Mathematics, 11(4):399-409, 2003.-
dc.description.referencesP. R. Halmos. Measure Theory. Springer-Verlag, 1987.-
dc.description.referencesKrzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328, 1990.-
dc.description.referencesFranz Merkl. Dynkin's lemma in measure theory. Formalized Mathematics, 9(3):591-595, 2001.-
dc.description.referencesAndrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.-
dc.description.referencesAndrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.-
dc.description.referencesBeata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.-
dc.description.referencesKarol Pąk. The Nagata-Smirnov theorem. Part II. Formalized Mathematics, 12(3):385-389, 2004.-
dc.description.referencesAndrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.-
dc.description.referencesZinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.-
dc.description.referencesEdmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.-
dc.description.referencesEdmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.-
dc.description.referencesHiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007, doi:10.2478/v10037-007-0026-3.-
dc.description.referencesBo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Set sequences and monotone class. Formalized Mathematics, 13(4):435-441, 2005.-
Występuje w kolekcji(ach):Formalized Mathematics, 2009, Volume 17, Issue 2

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
v10037-009-0018-6.pdf203,64 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons