Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/19594Pełny rekord metadanych
| Pole DC | Wartość | Język |
|---|---|---|
| dc.contributor.author | Pąk, Karol | - |
| dc.date.accessioned | 2026-01-09T11:44:20Z | - |
| dc.date.available | 2026-01-09T11:44:20Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.citation | Formalized Mathematics, Volume 33, Issue 1, Pages 25-41 | pl |
| dc.identifier.issn | 1426-2630 | - |
| dc.identifier.uri | http://hdl.handle.net/11320/19594 | - |
| dc.description.abstract | This paper presents a formal definition of the Conway normal form, a structured representation uniquely suited to characterising surreal numbers by expressing them as sums within a hierarchically ordered group. To this end, we formalise the first sections of the chapter The Structure of the General Surreal Number in Conway’s book. In particular, we define omega maps and prove the existence and uniqueness of the Conway name for surreal numbers. | pl |
| dc.language.iso | en | pl |
| dc.publisher | University of Białystok | pl |
| dc.rights | Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) | pl |
| dc.rights.uri | https://creativecommons.org/licenses/by-sa/4.0/ | pl |
| dc.subject | surreal number | pl |
| dc.subject | Conway’s game | pl |
| dc.subject | normal form | pl |
| dc.title | Conway’s Normal Form in the Mizar System | pl |
| dc.type | Article | pl |
| dc.rights.holder | © 2025 The Author(s) | pl |
| dc.rights.holder | CC BY-SA 4.0 license | pl |
| dc.identifier.doi | 10.2478/forma-2025-0003 | - |
| dc.description.Affiliation | Faculty of Computer Science, University of Białystok, Poland | pl |
| dc.description.references | Vincent Bagayoko and Joris van der Hoeven. Surreal substructures. Fundamenta Mathe maticae, 266(1):25–96, 2024. doi:10.4064/fm231020-23-2. | pl |
| dc.description.references | Alessandro Berarducci, Salma Kuhlmann, Vincenzo Mantova, and Mickael Matusinski. Exponential fields and Conway’s omega-map. Proceedings of the American Mathematical Society, 151(6):2655–2669, 2023. doi:10.1090/proc/14577. | pl |
| dc.description.references | Wolfgang Bertram. On Conway’s numbers and games, the von Neumann universe, and pure set theory. ArXiv preprint arXiv:2501.04412, 2025. | pl |
| dc.description.references | John Horton Conway. On Numbers and Games. A K Peters Ltd., Natick, MA, second edition, 2001. ISBN 1-56881-127-6. | pl |
| dc.description.references | Ovidiu Costin and Philip Ehrlich. Integration on the surreals. Advances in Mathematics, 452:109823, 2024. doi:10.1016/j.aim.2024.109823. | pl |
| dc.description.references | Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions in type theory. The Journal of Symbolic Logic, 65(2):525–549, 2000. doi:10.2307/2586554. | pl |
| dc.description.references | Philip Ehrlich. Conway names, the simplicity hierarchy and the surreal number tree. Journal of Logic and Analysis, 3(1):1–26, 2011. doi:10.4115/jla.2011.3.1. | pl |
| dc.description.references | Philip Ehrlich. The absolute arithmetic continuum and the unification of all numbers great and small. The Bulletin of Symbolic Logic, 18(1):1–45, 2012. doi:10.2178/bsl/1327328438. | pl |
| dc.description.references | Philp Ehrlich. Number systems with simplicity hierarchies: A generalization of Conway’s theory of surreal numbers. Journal of Symbolic Logic, 66(3):1231–1258, 2001. doi:10.2307/2695104. | pl |
| dc.description.references | Harry Gonshor. An Introduction to the Theory of Surreal Numbers. London Mathematical Society Lecture Note Series, 110. Cambridge University Press, 1986. ISBN 0521312051. | pl |
| dc.description.references | Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1. | pl |
| dc.description.references | Donald E. Knuth. Surreal Numbers: How Two Ex-students Turned on to Pure Mathematics and Found Total Happiness. Addison-Wesley, 1974. | pl |
| dc.description.references | Lionel Elie Mamane. Surreal numbers in Coq. In Jean-Christophe Filliˆatre, Christine Paulin-Mohring, and Benjamin Werner, editors, Types for Proofs and Programs, TYPES 2004, volume 3839 of LNCS, pages 170–185. Springer, 2004. doi:10.1007/11617990_11. | pl |
| dc.description.references | Steven Obua. Partizan games in Isabelle/HOLZF. In Kamel Barkaoui, Ana Cavalcanti, and Antonio Cerone, editors, Theoretical Aspects of Computing – ICTAC 2006, volume 4281 of LNCS, pages 272–286. Springer, 2006. | pl |
| dc.description.references | Karol Pąk. Conway numbers – formal introduction. Formalized Mathematics, 31(1): 193–203, 2023. doi:10.2478/forma-2023-0018. | pl |
| dc.description.references | Karol Pąk. Surreal dyadic and real numbers: A formal construction. Formalized Mathematics, 33(1):11–23, 2025. doi:10.2478/forma-2025-0002. | pl |
| dc.description.references | Karol Pąk. Integration of game theoretic and tree theoretic approaches to Conway numbers. Formalized Mathematics, 31(1):205–213, 2023. doi:10.2478/forma-2023-0019. | pl |
| dc.description.references | Karol Pąk and Cezary Kaliszyk. Conway normal form: Bridging approaches for comprehensive formalization of surreal numbers. In Yves Bertot, Temur Kutsia, and Michael Norrish, editors, 15th International Conference on Interactive Theorem Proving, ITP 2024, September 9-14, 2024, Tbilisi, Georgia, volume 309 of LIPIcs, pages 29:1–29:18. Schloss Dagstuhl – Leibniz-Zentrum f¨ur Informatik, 2024. doi:10.4230/LIPICS.ITP.2024.29. | pl |
| dc.description.references | Alex Ryba, Philip Ehrlich, Richard Kenyon, Jeffrey Lagarias, James Propp, and Louis Kauffman. Conway’s mathematics after Conway. Notices of the American Mathematical Society, 69:1145–1155, 2022. doi:10.1090/noti2513. | pl |
| dc.description.references | Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle framework. In Otmane Ait Mohamed, C´esar Mu˜noz, and Sofi`ene Tahar, editors, Theorem Proving in Higher Order Logics, pages 33–38. Springer Berlin Heidelberg, 2008. | pl |
| dc.identifier.eissn | 1898-9934 | - |
| dc.description.volume | 33 | pl |
| dc.description.issue | 1 | pl |
| dc.description.firstpage | 25 | pl |
| dc.description.lastpage | 41 | pl |
| dc.identifier.citation2 | Formalized Mathematics | pl |
| dc.identifier.orcid | 0000-0002-7099-1669 | - |
| Występuje w kolekcji(ach): | Formalized Mathematics, 2025, Volume 33, Issue 1 | |
Pliki w tej pozycji:
| Plik | Opis | Rozmiar | Format | |
|---|---|---|---|---|
| Conway’s_Normal_Form_in_the_Mizar_System.pdf | 342,9 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL
