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Summary. This paper presents a formal definition of the Conway normal
form, a structured representation uniquely suited to characterising surreal num-
bers by expressing them as sums within a hierarchically ordered group. To this
end, we formalise the first sections of the chapter The Structure of the Gene-
ral Surreal Number in Conway’s book. In particular, we define omega maps and
prove the existence and uniqueness of the Conway name for surreal numbers.
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Introduction

Conway surreal numbers [12] can be constructed according to two inde-
pendent principles: the game-theoretic approach [4, 14] and the tree-theoretic
approach [7, 8]. In this formalization we use our construction of the ≈ equiva-
lence class representative of a surreal number x, called uniq-surreal, denoted as
UniqNox [17], to unify these two approaches in order to formalize the canonical
representation, called normal forms by Conway. The definition of the Conway
Normal Form allows an analysis of the structure [1] of surreal numbers as an
ordered vector space over R. This framework provides a path for future rese-
arch on surreal numbers, as it allows e.g. the reformulation of basic arithmetic
operations in terms of vector space operations, thus facilitating the application
of vector space theory to the analysis of surreal numbers [5], [19], [10].
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The formalization follows [4, 8, 9], selected fragments have been described in
[18]. For formal developments in another systems, as Coq or Isabelle [20], see [13]
and [14]. In Mizar [11] we cannot directly use type-theoretic induction-recursion
[6], as we are focused more on set theory [3].

In Section 1, we define the relation between two numbers, x and y, as com-
mensurate if and only if x < n ·y and y < m ·x, for some n,m ∈ N+ (see Def. 1).
Then we prove that this relation is both an equivalence and a convex relation.
Conway defines this relation using only one natural number, which is equivalent
to our approach (see Th7). Additionally, we define and prove the fundamental
property of the infinitesimal less operator (see Def. 2), as follows: x <∞ y if
x · n < y for all n ∈ N+.

Section 2 introduces the Conway ω-map [4, 2] and demonstrates the fun-
damental property ω0 = 1 (see Th26), ω(x+y) ≈ ωx · ωy (see Th27) which are
typical for the standard power function. Note that it has an additional pro-
perties, namely that ωx <∞ ωy for x < y. We also examines the behaviour
of ω-map in the context of the commensurate and infinitesimal less relations,
as well as applying the standard absolute value to extend context for negative
surreal numbers.

In Section 3 we prove the existence of the unique characterization of non
zero surreal numbers x as pairs consisting of a commensurate leader y and a
non zero real number r for a given x 6≈ 0 such that |x−r ·ωy| <∞ |x|. We define
ωr(x) = r, ωy(x) = y (see Def. 7, Def. 8).

In the following section, we direct our attention to the convex subclass of
surreal numbers differing from s by infinitesimal less than ωy, which is referred
to as the β-term in Conway’s handbook, where β is defined in the context of
this work. We say that x is (s, y, r)− term if and only if |x− (s+ r ·ωy)| <∞ ωy
(Def. 12). Note that our definition of the β-term is based on an explanation
provided by Ehrlich ([9], Theorem 13).

In Section 5, in accordance with Ehrlich’s approach, we formally introduce
the convex subclass

⋂
s,y, r, α as follows:

x ∈
⋂
s,y, r, α ⇐⇒ ∀β<α x is (s(β),y(β), r(β))− term,

where s, y are sequences of surreal numbers and r is of real numbers, each of at
least α-length. Next proceed to assume that the length of s is at least α+ 1. A
triple (s,y, r) simplest on α if α = 0 and s(α) = 0 or α 6= 0, s(α) is

⋂
s,y, r, α

and has the smallest birth of all
⋂
s,y, r, α surreal numbers (see Def. 15). Ad-

ditionally, we call a triple (s,y, r) simplest up to α if (s,y, r, β) simplest for all
β < α (see Def. 16). This section is concluded with the proof of two properties
of the sequence s. Firstly, we demonstrate that the sequence s is unique up
to position α if it contains only uniq-surreal numbers and if (s,y, r) is in its
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simplest up to α (Th77, Th80). Secondly, we provide an example of a sequen-
ce s of uniq-surreal numbers for which (s,y, r) is simplest up to α under the
assumption that y is a strictly decreasing sequence, and that r is a sequence
of non-zero real numbers (Th82). Using these properties, we define Conway’s
generalisation of partial sums as follows.

Definition 1 (Def. 18) Let α be an ordinal, y = {yβ}β<α be a strictly de-
creasing sequence of surreal numbers, r = {rβ}β<α be a sequence of non-zero
real. Consider s = {sβ}β¬α where the triple (s,y, r) is simplest up to α. For
each each β ¬ α we define unique expression

∑
γ<β ω

yγ · rγ to be sβ called βth
Conway’s partial sum.

In Section 6, we concentrate on the approximation of a given number x 6≈ 0
using commensurate leaders. Applying ω-maps, we get x1 := x−ωy0 · r0 which
is infinitely smaller in absolute terms than x where r0 := ωr(x), y0 := ωy(x).
Then, if x1 6≈ 0, it is possible to produce another r1, y1, x2 in a similar manner
where |x2| <∞ |x1| <∞ |x| and x = ωy0 · r0 + ωy1 · r1 + x2. We call the
constructed sequences (r,y) the α-name of x if the remainder is non-zero in each
iteration β for β < α where α is an ordinal. As we illustrated in Theorem Th101,
for any a strictly decreasing sequence of surreal numbers y = {yβ}β<α and a
sequence of non-zero real r = {rβ}β<α, (r,y) is the α-name of

∑
β<αω

yβ · rβ.
We constructed also an ordinal α and two α-length sequences (r,y), for a given
x such that

∑
β<αω

yβ · rβ ≈ x (see Th100). Finally, we prove that this pair of
sequences is unique (see Th102), known as the Conway Normal Form [4].

1. Commensurability in Archimedean Classes of Surreal Numbers

Let s1, s2 be non-zero transfinite sequences. One can verify that s1 a s2
is non-zero and there exists a transfinite sequence of elements of R which is
non-zero. Let R be a non-zero binary relation and X be a set. One can check
that R�X is non-zero. From now on o denotes an object, x, y, z denote surreal
numbers, and r, r1, r2 denote real numbers. Now we state the proposition:

(1) sR(r) ∈ Dayω.

The functor ω yielding a On unique surreal number is defined by the term

(Def. 1) OrdinalOn(ω).

Let x, y be surreal numbers. We say that x, y are commensurate if and only
if

(Def. 2) there exists a positive natural number n such that x < sZ(n) ·y and there
exists a positive natural number n such that y < sZ(n) · x.

One can check that the predicate is symmetric. Now we state the propositions:
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(2) If x is positive, then x, x are commensurate.

(3) If x, y are commensurate, then x is positive.

Let us consider surreal numbers x, y, z. Now we state the propositions:

(4) If x, y are commensurate and y, z are commensurate, then x, z are
commensurate.
Proof: There exists a positive natural number n such that x < sZ(n) ·
z. Consider n being a positive natural number such that y < sZ(n) · x.
Consider m being a positive natural number such that z < sZ(m) · y. �

(5) If x ≈ y and x, z are commensurate, then y, z are commensurate.
Proof: There exists a positive natural number n such that y < sZ(n) · z.
Consider n being a positive natural number such that z < sZ(n) · x. �

(6) If x, z are commensurate and x ¬ y ¬ z, then x, y are commensurate
and y, z are commensurate. The theorem is a consequence of (3), (5), and
(2).

(7) x, y are commensurate if and only if there exists a positive natural
number n such that x < sZ(n) · y and y < sZ(n) · x.
Proof: If x, y are commensurate, then there exists a positive natural
number n such that x < sZ(n) · y and y < sZ(n) · x. �

(8) If x is positive and x ≈ y, then x, y are commensurate.

Let x, y be surreal numbers. We say that x<∞y if and only if

(Def. 3) for every positive real number r, x · sR(r) < y.

Now we state the propositions:

(9) If x<∞y, then x < y.

(10) Let us consider a real number r. Then sR(r)<∞ω. The theorem is a con-
sequence of (1).

Let us consider surreal numbers x, y, z. Now we state the propositions:

(11) If x ¬ y<∞z, then x<∞z.

(12) If x<∞y ¬ z, then x<∞z.

(13) Let us consider a positive real number r, and surreal numbers x, y.
Suppose x<∞y. Then

(i) x · sR(r)<∞y, and

(ii) x<∞y · sR(r).

Proof: x · sR(r)<∞y by [16, (57)], [16, (69),(51)], [17, (4)]. �

(14) Let us consider surreal numbers x, y, z. If x<∞y<∞z, then x<∞z.

(15) If x, y are commensurate and y<∞z, then x<∞z.

(16) If x, y are commensurate and z<∞x, then z<∞y.
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(17) If x ≈ y and y<∞z, then x<∞z.

(18) If x<∞z and y<∞z, then x + y<∞z. The theorem is a consequence of
(13).

(19) If x ≈ y and z<∞x, then z<∞y.

(20) If 0No ¬ x<∞y, then x · sR(r) < y. The theorem is a consequence of (9).

2. Conway’s ω-map

Let α be an ordinal number. The functor omegaNo(α) yielding a many sorted
set indexed by Dayα is defined by

(Def. 4) there exists a ⊆-monotone, function yielding transfinite sequence S such
that domS = succα and it = S(α) and for every ordinal number β

such that β ∈ succα there exists a many sorted set S indexed by Dayβ
such that S(β) = S and for every object x such that x ∈ Dayβ holds
S(x) = 〈〈{0No} ∪ {(

⋃
rng(S�β))(x3) ∗ sR(r), where x3 is an element of

Lx, r is an element of R : x3 ∈ Lx and r is positive}, {(
⋃

rng(S�β))(x4) ∗
sR(r), where x4 is an element of Rx, r is an element of R : x4 ∈ Rx and
r is positive}〉〉.

Now we state the proposition:

(21) Let us consider a ⊆-monotone, function yielding transfinite sequence S.
Suppose for every ordinal number β such that β ∈ domS there exists
a many sorted set S indexed by Dayβ such that S(β) = S and for every
object x such that x ∈ Dayβ holds S(x) = 〈〈{0No} ∪ {(

⋃
rng(S�β))(x3) ∗

sR(r), where x3 is an element of Lx, r is an element of R : x3 ∈ Lx and
r is positive}, {(

⋃
rng(S�β))(x4)∗sR(r), where x4 is an element of Rx, r is

an element of R : x4 ∈ Rx and r is positive}〉〉. Let us consider an ordinal
number α. If α ∈ domS, then omegaNo(α) = S(α).
Proof: DefineD(ordinal number) = Day$1. DefineH(object,⊆-monotone,
function yielding transfinite sequence) = 〈〈{0No}∪{(

⋃
rng $2)(x3)∗ sR(r),

where x3 is an element of L$1 , r is an element of R : x3 ∈ L$1 and r is po-
sitive}, {(

⋃
rng $2)(x4) ∗ sR(r), where x4 is an element of R$1 , r is an ele-

ment of R : x4 ∈ R$1 and r is positive}〉〉. Consider S2 being a⊆-monotone,
function yielding transfinite sequence such that domS2 = succα and
S2(α) = omegaNo(α) and for every ordinal number β such that β ∈ succα
there exists a many sorted set S indexed by D(β) such that S2(β) = S
and for every object x such that x ∈ D(β) holds S(x) = H(x, S2�β).
S1� succα = S2� succα. �

Let us consider x. The functor ωx yielding a set is defined by the term
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(Def. 5) (omegaNo(bornx))(x).

One can verify that ωx is surreal and ωx is positive. Now we state the
propositions:

(22) o ∈ Lωx if and only if o = 0No or there exists a surreal number x3
and there exists a positive real number r such that x3 ∈ Lx and o =
(ωx3) · sR(r).

(23) o ∈ Rωx if and only if there exists a surreal number x4 and there exists
a positive real number r such that x4 ∈ Rx and o = (ωx4) · sR(r).

(24) If x ¬ y, then ωx ¬ ωy.
(25) If x < y, then ωx<∞ωy.

(26) ω0No = 1No. The theorem is a consequence of (22) and (23).

(27) (ωx) · (ωy) ≈ ω(x+y).
Proof: Define P[ordinal number] ≡ for every surreal numbers x, y such
that bornx ⊕ born y = $1 holds (ωx) · (ωy) ≈ ω(x+y). For every ordinal
number D such that for every ordinal number C such that C ∈ D holds
P[C] holds P[D]. For every ordinal number D, P[D]. �

(28) (ωx)−1 ≈ ω(−x). The theorem is a consequence of (26) and (27).

(29) Let us consider surreal numbers z, x. Suppose z ¬ x and z, ωy are
commensurate and x, ωy are not commensurate. Then ωy <∞x.

(30) Let us consider surreal numbers x, z. Suppose 0No < x ¬ z and z, ωy

are commensurate and x, ωy are not commensurate. Then x<∞ωy.

Let x be a surreal number. The functor |x| yielding a surreal number is
defined by the term

(Def. 6)

{
x, if 0No ¬ x,
−x, otherwise.

Now we state the propositions:

(31) 0No ¬ |x|.
(32) (i) |x| = x, or

(ii) |x| = −x.

(33) x ≈ 0No if and only if |x| ≈ 0No.

(34) −|x| ¬ x ¬ |x|.
(35) −y ¬ x ¬ y if and only if |x| ¬ y.
Proof: If −y ¬ x ¬ y, then |x| ¬ y. 0No ¬ |x|. �

(36) If x 6≈ 0No, then |x| is positive.

(37) |x+ y| ¬ |x|+ |y|. The theorem is a consequence of (34) and (35).

(38) If x ≈ 0No, then |−x| ≈ |x|.
(39) If x 6≈ 0No, then |−x| = |x|.
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(40) |−x| ≈ |x|.
(41) If |x|<∞z and |y|<∞z, then |x+ y|<∞z. The theorem is a consequence

of (13) and (37).

(42) If |x|<∞z, then |−x|<∞z. The theorem is a consequence of (40).

(43) If |x|<∞z and |y|<∞z, then |x− y|<∞z. The theorem is a consequence
of (42) and (41).

(44) If |y|<∞x, then x+ y 6≈ 0No. The theorem is a consequence of (9).

(45) If |y|<∞|x|, then x + y 6≈ 0No. The theorem is a consequence of (44),
(40), and (17).

(46) If |y|<∞x, then x 6≈ 0No. The theorem is a consequence of (9) and (31).

(47) If |y|<∞|x|, then x 6≈ 0No. The theorem is a consequence of (46).

(48) If x ≈ y, then |x| ≈ |y|.
(49) ||x| − |y|| ¬ |x − y|. The theorem is a consequence of (37), (48), (39),

(38), and (35).

(50) ||x|| = |x|.
(51) If x ¬ y ¬ z, then |y| ¬ |x|+ |z|. The theorem is a consequence of (31).

(52) −y < x < y if and only if |x| < y.
Proof: If −y < x < y, then |x| < y. 0No ¬ |x|. �

(53) If 0No ¬ x<∞y, then |x · sR(r)|<∞y. The theorem is a consequence of
(20).

3. Unique Characterization of Surreal Number

Let x be a surreal number. Assume x 6≈ 0No. The functor yω(x) yielding
a unique surreal number is defined by

(Def. 7) |x|, ωit are commensurate.

Now we state the propositions:

(54) Suppose x, ωy are commensurate. Then there exists a positive real num-
ber s such that |x− (ωy) · sR(s)|<∞x.
Proof: Set N = ωy. Define L[object] ≡ $1 is a real number and for every
real number r such that r = $1 holds N · sR(r) ¬ x. Define R[object] ≡
$1 is a real number and for every real number r such that r = $1 holds
x < N · sR(r). For every extended reals r, s such that L[r] and R[s] holds
r ¬ s. Consider s being an extended real such that for every extended
real r such that L[r] holds r ¬ s and for every extended real r such that
R[r] holds s ¬ r. Consider n being a positive natural number such that
x < sZ(n) ·N and N < sZ(n) · x. �
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(55) If x is positive and |x−(ωy) ·sR(r)|<∞x, then r is positive. The theorem
is a consequence of (9).

(56) If x 6≈ 0No, then yω(x) = yω(−x). The theorem is a consequence of
(39).

Let x be a surreal number. Assume x 6≈ 0No. The functor rω(x) yielding
a non zero real number is defined by

(Def. 8) |x− (ωyω(x)) · sR(it)|<∞|x|.
Now we state the propositions:

(57) Let us consider a positive natural number n. Suppose |y| · sR(n+1n ) < |x|.
Then |x|, |x+y| are commensurate. The theorem is a consequence of (31),
(39), (38), (49), and (37).

(58) If |x| is positive, then x 6≈ 0No.

(59) Suppose x · sR(r1) < y · sR(r2) and 0 < r. Then x · sR(r1 ·r) < y · sR(r2 ·r).
(60) Suppose x · sR(r1) ¬ y · sR(r2) and 0 ¬ r. Then x · sR(r1 ·r) ¬ y · sR(r2 ·r).
(61) Suppose x 6≈ 0No and y 6≈ 0No. Then yω(x) = yω(y) if and only if |x|,
|y| are commensurate. The theorem is a consequence of (4).

(62) Suppose x 6≈ 0No and x+ y 6≈ 0No and yω(x) = yω(x+ y) and rω(x) =
rω(x+y). Then |y|<∞|x|. The theorem is a consequence of (16), (4), (48),
(37), (59), and (40).

(63) Suppose |y|<∞|x|. Then

(i) x 6≈ 0No, and

(ii) x+ y 6≈ 0No, and

(iii) yω(x) = yω(x+ y), and

(iv) rω(x) = rω(x+ y).

Proof: |x|, |x+ y| are commensurate. Set N = ωyω(x).
|x+ y +−N · sR(rω(x))|<∞|x|. |x+ y −N · sR(rω(x))|<∞|x+ y|. �

(64) If x 6≈ 0No and y ≈ 0No, then y<∞|x|. The theorem is a consequence of
(36).

(65) If sR(r) ≈ 0No, then r = 0.

(66) If x is positive and r 6= 0, then | sR(r) · x|, x are commensurate. The
theorem is a consequence of (48), (39), (38), and (5).

The scheme Simplest deals with a unary predicate P and states that

(Sch. 1) There exists a unique surreal number s such that P[s] and for every
unique surreal number x such that P[x] and x 6= s holds born s ∈ bornx

provided

• there exists a surreal number x such that P[x] and
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• for every surreal numbers x, y, z such that x ¬ y ¬ z and P[x] and P[z]
holds P[y].

Let f be a function. We say that f is surreal valued if and only if

(Def. 9) rng f is surreal-membered.

Let s be a surreal number. Let us note that 〈s〉 is surreal valued and there
exists a transfinite sequence which is surreal valued.

Let f be a surreal valued function. Observe that rng f is surreal-membered.
A surreal sequence is a surreal valued transfinite sequence. LetX be a surreal-

membered set. Let us observe that every subset of X is surreal-membered.
Let f be a surreal valued function and X be a set. Note that f�X is surreal

valued.
Let f , g be surreal sequences. One can check that f a g is surreal valued.
Let f be a function. We say that f is uniq-surreal valued if and only if

(Def. 10) rng f is unique surreal-membered.

Let s be a unique surreal number. Note that 〈s〉 is uniq-surreal valued and
there exists a transfinite sequence which is uniq-surreal valued. Let f be a uniq-
surreal valued function. Let us note that rng f is unique surreal-membered.
A uniq-surreal sequence is a uniq-surreal valued transfinite sequence. Let X
be a unique surreal-membered set. Observe that every subset of X is unique
surreal-membered.

Let f be a uniq-surreal valued function and X be a set. One can check that
f�X is uniq-surreal valued. Let f , g be uniq-surreal sequences. One can verify
that f a g is uniq-surreal valued and every set which is unique surreal-membered
is also surreal-membered and every function which is uniq-surreal valued is also
surreal valued. Let S be a surreal sequence. We say that S is strictly decreasing
if and only if

(Def. 11) for every ordinal numbers α, β such that α ∈ β ∈ domS for every surreal
numbers x, y such that x = S(α) and y = S(β) holds y < x.

Let s be a unique surreal number. Observe that 〈s〉 is strictly decreasing and
there exists a uniq-surreal sequence which is strictly decreasing.

4. α-term – An Essential Component of the Conway Normal Form

Let s be an object, y be a surreal number, r be a real number, and x be
an object. We say that x is (s,y,r)-term if and only if

(Def. 12) x+′ −′s 6≈ 0No and yω(x+′ −′s) ≈ y and rω(x+′ −′s) = r.

Let s, y be surreal numbers and x be a surreal number. Let us note that x
is (s,y,r)-term if and only if the condition (Def. 13) is satisfied.
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(Def. 13) x− s 6≈ 0No and yω(x− s) ≈ y and rω(x− s) = r.

Now we state the propositions:

(67) If r 6= 0, then sR(r) · (ωy) 6≈ 0No. The theorem is a consequence of (66)
and (3).

(68) If r 6= 0, then yω(sR(r) · (ωy)) = UniqueNo(y). The theorem is a conse-
quence of (66), (67), and (5).

(69) Let us consider a surreal number s. Suppose r 6= 0. Then s+ sR(r) · (ωy)
is (s,y,r)-term. The theorem is a consequence of (67), (68), (36), (48), (8),
(61), and (64).

(70) Suppose x ≈ y and x 6≈ 0No. Then

(i) yω(x) = yω(y), and

(ii) rω(x) = rω(y).

The theorem is a consequence of (36), (48), (8), (61), (16), and (17).

Let us consider a surreal number s. Now we state the propositions:

(71) If r 6= 0, then s+ sR(r) · (ωy) + x is (s,y,r)-term iff |x|<∞ωy.
Proof: Set N = ωy. Set R = sR(r). Set s9 = s + R · N + x. Set s7 =
s+R ·N+−s. R ·N 6≈ 0No. |s7| is positive. |s7|, |N ·R| are commensurate.
|N · R|, N are commensurate. |s7|, N are commensurate. s + R · N is
(s,y,r)-term. If s9 is (s,y,r)-term, then |x|<∞N . |x|<∞|s7|. s7 + x 6≈ 0No
and yω(s7) = yω(s7 + x) and rω(s7) = rω(s7 + x). �

(72) If r 6= 0 and x is (s,y,r)-term and x ≈ z, then z is (s,y,r)-term. The
theorem is a consequence of (70).

(73) If r 6= 0, then x is (s,y,r)-term iff |x − (s + sR(r) · (ωy))|<∞ωy. The
theorem is a consequence of (72) and (71).

(74) Let us consider surreal numbers s, p. Suppose r 6= 0. Let us consider
surreal numbers x, y, z. Suppose x is (s,p,r)-term and z is (s,p,r)-term
and x ¬ y ¬ z. Then y is (s,p,r)-term. The theorem is a consequence of
(73), (18), (11), and (51).

5. Conway’s Generalization of Partial Sums

Let r be a transfinite sequence of elements of R, y, s be transfinite sequences,
α be an ordinal number, and x be a surreal number. We say that x ∈

⋂
s,y,r,α

if and only if

(Def. 14) for every ordinal number β and for every surreal numbers y, z such that
β ∈ α and y = s(β) and z = y(β) holds x is (y,z,(r(β)))-term.

We say that 〈s,y,r〉 is simplest on position α if and only if
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(Def. 15) for every surreal number y such that y = s(α) holds if 0 = α, then
y = 0No and if 0 6= α, then y ∈

⋂
s,y,r,α and for every unique surreal

number x such that x ∈
⋂
s,y,r,α and x 6= y holds born y ∈ bornx.

Let us consider a transfinite sequence r of elements of R, transfinite sequen-
ces y, s1, s2, and an ordinal number α. Now we state the propositions:

(75) Suppose s1�α = s2�α and x ∈
⋂

s1,y,r,α. Then x ∈
⋂

s2,y,r,α.

(76) Suppose s1(α) is a unique surreal number and s2(α) is a unique surre-
al number and s1�α = s2�α and 〈s1,y,r〉 is simplest on position α and
〈s2,y,r〉 is simplest on position α. Then s1(α) = s2(α). The theorem is
a consequence of (75).

Let r be a transfinite sequence of elements of R, y, s be transfinite sequences,
and α be an ordinal number. We say that 〈s,y,r〉 is simplest up to α if and only
if

(Def. 16) for every ordinal number β such that β ∈ α holds 〈s,y,r〉 is simplest on
position β.

Now we state the propositions:

(77) Let us consider a transfinite sequence r of elements of R, a transfinite
sequence y, uniq-surreal sequences s1, s2, and an ordinal number α. Sup-
pose α ⊆ dom s1 and α ⊆ dom s2 and 〈s1,y,r〉 is simplest up to α and
〈s2,y,r〉 is simplest up to α. Then s1�α = s2�α.
Proof: Define P[ordinal number] ≡ if $1 ∈ α, then s1($1) = s2($1). For
every ordinal number D such that for every ordinal number C such that
C ∈ D holds P[C] holds P[D]. For every ordinal number D, P[D]. For
every object x such that x ∈ α holds (s1�α)(x) = (s2�α)(x). �

(78) Let us consider a transfinite sequence r of elements of R, transfinite
sequences y, s, and ordinal numbers α, β. Suppose β ⊆ α and 〈s,y,r〉 is
simplest up to α. Then 〈s,y,r〉 is simplest up to β.

Let us consider a transfinite sequence r of elements of R, transfinite sequen-
ces y, s, and an ordinal number α. Now we state the propositions:

(79) x ∈
⋂
s,y,r,α if and only if x ∈

⋂
s� succα,y,r,α.

Proof: If x ∈
⋂
s,y,r,α, then x ∈

⋂
s� succα,y,r,α. �

(80) 〈s� succα,y,r〉 is simplest on position α if and only if 〈s,y,r〉 is simplest
on position α. The theorem is a consequence of (79).

(81) Let us consider a non-zero transfinite sequence r of elements of R, trans-
finite sequences p, s, and an ordinal number α. Suppose α ⊆ dom r. Let
us consider surreal numbers x, y, z. Suppose x ¬ y ¬ z and x ∈

⋂
s,p,r,α

and z ∈
⋂
s,p,r,α. Then y ∈

⋂
s,p,r,α. The theorem is a consequence of

(74).
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(82) Let us consider a non-zero transfinite sequence r of elements of R, and
a strictly decreasing surreal sequence y. Then there exists a uniq-surreal
sequence s such that

(i) dom s = succ(dom r ∩ domy), and

(ii) 〈s,y,r〉 is simplest up to dom s.

Proof: Define P[ordinal number] ≡ if $1 ⊆ dom r ∩ domy, then there
exists a uniq-surreal sequence s such that dom s = succ $1 and 〈s,y,r〉
is simplest up to dom s. For every ordinal number D such that for every
ordinal number C such that C ∈ D holds P[C] holds P[D]. For every
ordinal number D, P[D]. �

Let r be a non-zero transfinite sequence of elements of R and y be a stric-
tly decreasing surreal sequence. The functor PartialSums(r,y) yielding a uniq-
surreal sequence is defined by

(Def. 17) dom it = succ(dom r∩domy) and for every ordinal number A such that
A ∈ dom it holds 〈it,y,r〉 is simplest on position A.

The functor
∑y
κ=0 r(κ) yielding a unique surreal number is defined by the

term

(Def. 18) (PartialSums(r,y))(dom r ∩ domy).

Let s be a strictly decreasing surreal sequence and α be an ordinal number.
Note that s�α is strictly decreasing.

Let us consider a transfinite sequence r of elements of R, transfinite sequen-
ces y, s, and ordinal numbers α, β. Now we state the propositions:

(83) Suppose α ⊆ β. Then x ∈
⋂
s,y,r,α if and only if x ∈

⋂
s,y� β,r�β,α.

Proof: If x ∈
⋂
s,y,r,α, then x ∈

⋂
s,y� β,r�β,α. �

(84) Suppose β ⊆ α. Then 〈s,y�α,r�α〉 is simplest on position β if and only
if 〈s,y,r〉 is simplest on position β. The theorem is a consequence of (83).

(85) Let us consider a non-zero transfinite sequence r of elements of R,
a strictly decreasing surreal sequence y, and an ordinal number α. Then
PartialSums(r,y)� succα = PartialSums(r�α,y�α).
Proof: succ(dom r ∩ domy) ∩ succα = succ(dom(r�α) ∩ dom(y�α)).
〈PartialSums(r,y)� succα,y�α,r�α〉 is simplest up to dom(PartialSums(r,
y)� succα). �

6. Conway Names for Surreal Numbers

Let r be a non-zero transfinite sequence of elements of R, y be a strictly
decreasing surreal sequence, α be an ordinal number, and x be a surreal number.
We say that 〈r,y,α〉 name like x if and only if
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(Def. 19) α ⊆ dom r = domy and for every ordinal number β such that β ∈ α
for every surreal number P1 such that P1 = (PartialSums(r,y))(β) holds
x 6≈ P1 and r(β) = rω(x− P1) and y(β) = yω(x− P1).

Now we state the propositions:

(86) Let us consider a non-zero transfinite sequence r of elements of R, a stric-
tly decreasing surreal sequence y, and ordinal numbers α, β. Suppose
α ⊆ β and 〈r,y,β〉 name like x. Then 〈r,y,α〉 name like x.

(87) Let us consider non-zero transfinite sequences r1, r2 of elements of R,
strictly decreasing surreal sequences y1, y2, and an ordinal number α.
Suppose 〈r1,y1,α〉 name like x and 〈r2,y2,α〉 name like x. Then

(i) r1�α = r2�α, and

(ii) y1�α = y2�α.

Proof: Define P[ordinal number] ≡ if 〈r1,y1,$1〉 name like x and 〈r2,y2,$1〉
name like x, then r1�$1 = r2�$1 and y1�$1 = y2�$1. For every ordinal
number D such that for every ordinal number C such that C ∈ D holds
P[C] holds P[D]. For every ordinal number D, P[D]. �

(88) Let us consider a non-zero transfinite sequence r of elements of R, a stric-
tly decreasing surreal sequence y, and an ordinal number α. Suppose
〈r,y,α〉 name like x. Then x ∈

⋂
PartialSums(r,y),y,r,α. The theorem

is a consequence of (16) and (73).

(89) Let us consider a non-zero transfinite sequence r of elements of R, and
a strictly decreasing surreal sequence y.
Then

∑y
κ=0 r(κ) ∈

⋂
PartialSums(r,y),y,r,dom r ∩ domy.

(90) Let us consider a non-zero transfinite sequence r of elements of R,
a transfinite sequence y, a surreal sequence s, and ordinal numbers α,
β. Suppose β ∈ α ⊆ dom r ∩ domy and α ⊆ dom s. Let us consider a sur-
real number y4. Suppose y4 = y(β) and x ∈

⋂
s,y,r,α and z ∈

⋂
s,y,r,α.

Then |x−z|<∞ωy4 . The theorem is a consequence of (73), (43), (48), and
(11).

(91) Let us consider a non-zero transfinite sequence r of elements of R, a stric-
tly decreasing surreal sequence y, and an ordinal number α. Suppose
〈r,y,α〉 name like x. Then 〈r�α,y�α,α〉 name like x. The theorem is a con-
sequence of (85).

(92) Let us consider a non-zero transfinite sequence r of elements of R, and
a strictly decreasing surreal sequence y. Suppose z ∈

⋂
PartialSums(r,y),

y,r,dom r∩domy and z 6≈
∑y
κ=0 r(κ). Let us consider an ordinal number

α, and a surreal number y3. Suppose α ∈ dom r ∩ domy and y3 = y(α).
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Then yω(
∑y
κ=0 r(κ)−z) < y3. The theorem is a consequence of (89), (90),

(9), and (15).

(93) Let us consider a non-zero transfinite sequence r of elements of R, a stric-
tly decreasing surreal sequence y, and an ordinal number α. Suppose
α ⊆ dom r ∩ domy. Then (PartialSums(r,y))(α) =

∑y�α
κ=0(r�α)(κ). The

theorem is a consequence of (85).

(94) Let us consider a non-zero transfinite sequence r of elements of R, and
a strictly decreasing surreal sequence y. Suppose x ∈

⋂
PartialSums(r,y),

y,r,dom r ∩ domy and z ∈
⋂

PartialSums(r,y),y,r,dom r ∩ domy and
x 6≈ z. Let us consider an ordinal number α, and a surreal number y3.
Suppose α ∈ dom r ∩ domy and y3 = y(α). Then yω(x − z) < y3. The
theorem is a consequence of (90), (9), and (15).

(95) Suppose for every non-zero transfinite sequence r of elements of R and
for every strictly decreasing uniq-surreal sequence y such that dom r =
domy and 〈r,y,dom r〉 name like x holds

∑y
κ=0 r(κ) 6≈ x. Let us consider

an ordinal number α. Then there exists a non-zero transfinite sequence r of
elements of R and there exists a strictly decreasing uniq-surreal sequence
y such that dom r = succα = domy and 〈r,y,succα〉 name like x.
Proof: Define P[ordinal number] ≡ there exists a non-zero transfinite
sequence r of elements of R and there exists a strictly decreasing uniq-
surreal sequence y such that dom r = succ $1 = domy and 〈r,y,succ $1〉
name like x. For every ordinal number D such that for every ordinal num-
ber C such that C ∈ D holds P[C] holds P[D]. For every ordinal number
D, P[D]. �

Let s be a surreal sequence. The functor born s yielding a sequence of ordinal
numbers is defined by

(Def. 20) dom it = dom s and for every ordinal number α such that α ∈ dom s for
every surreal number s5 such that s5 = s(α) holds it(α) = born s5.

Now we state the proposition:

(96) Let us consider a transfinite sequence r of elements of R, a surreal se-
quence y, a uniq-surreal sequence s, and an ordinal number α. Suppose
〈s,y,r〉 is simplest up to α and α ⊆ succ domy. Then s�α is one-to-one.
Proof: For every ordinal numbers a, b such that a ∈ b ∈ dom(s�α) holds
(s�α)(a) 6= (s�α)(b). For every objects x1, x2 such that x1, x2 ∈ dom(s�α)
and (s�α)(x1) = (s�α)(x2) holds x1 = x2. �

Let r be a non-zero transfinite sequence of elements of R and y be a strictly
decreasing surreal sequence. Let us observe that PartialSums(r,y) is one-to-one.

Now we state the proposition:
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(97) Let us consider a transfinite sequence r of elements of R, a surreal se-
quence y, a uniq-surreal sequence s, and an ordinal number α. Suppose
〈s,y,r〉 is simplest up to α and s�α is one-to-one. Then born s�α is incre-
asing.
Proof: For every ordinal numbers β, γ such that β ∈ γ ∈ dom(born s�α)
holds (born s�α)(β) ∈ (born s�α)(γ) by [15, (37)]. �

Let r be a non-zero transfinite sequence of elements of R and y be a stric-
tly decreasing surreal sequence. One can verify that born PartialSums(r,y) is
increasing.

Now we state the propositions:

(98) Let us consider a non-zero transfinite sequence r of elements of R, a stric-
tly decreasing surreal sequence y, a uniq-surreal sequence s, and an ordinal
number α. Suppose α ⊆ dom r and x ∈

⋂
s,y,r,α and 〈s,y,r〉 is simplest

up to succα. Then rng born (s� succα) ⊆ succ born≈x. The theorem is
a consequence of (81).

(99) Let us consider a non-zero transfinite sequence r of elements of R,
and a strictly decreasing surreal sequence y. Then dom r ∩ domy ⊆
born

∑y
κ=0 r(κ).

Proof: Set s = PartialSums(r,y).
∑y
κ=0 r(κ) ∈

⋂
s,y,r,dom r ∩ domy

and 〈s,y,r〉 is simplest up to dom s. rng born (s� dom s) ⊆
succ born≈

∑y
κ=0 r(κ). succ(dom r ∩ domy) ⊆ succ born

∑y
κ=0 r(κ). �

(100) Conway Normal Form:
Let us consider a surreal number x. Then there exists a non-zero transfinite
sequence r of elements of R and there exists a strictly decreasing uniq-
surreal sequence y such that dom r = domy ⊆ born≈x and

∑y
κ=0 r(κ) ≈

x.
Proof: There exists a non-zero transfinite sequence r of elements of R
and there exists a strictly decreasing uniq-surreal sequence y such that
dom r = domy and 〈r,y,dom r〉 name like x and

∑y
κ=0 r(κ) ≈ x. Con-

sider r being a non-zero transfinite sequence of elements of R, y being
a strictly decreasing uniq-surreal sequence such that dom r = domy and
〈r,y,dom r〉 name like x and

∑y
κ=0 r(κ) ≈ x. �

(101) Let us consider a non-zero transfinite sequence r of elements of R, and
a strictly decreasing uniq-surreal sequence y. Suppose dom r = domy.
Then 〈r,y,dom r〉 name like

∑y
κ=0 r(κ).

Proof: Set s =
∑y
κ=0 r(κ). s 6≈ P1. �

(102) Let us consider non-zero transfinite sequences r1, r2 of elements of R, and
strictly decreasing uniq-surreal sequences y1, y2. Suppose dom r1 = dom y1
and dom r2 = dom y2 and

∑y1
κ=0 r1(κ) ≈

∑y2
κ=0 r2(κ). Then
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(i) r1 = r2, and

(ii) y1 = y2.

The theorem is a consequence of (101), (87), and (85).

(103) Let us consider a non-zero transfinite sequence r of elements of R, a stric-
tly decreasing uniq-surreal sequence y, and an ordinal number α. Suppo-
se α ⊆ dom r = domy. Let us consider surreal numbers x, z. Suppose
〈r,y,α〉 name like x and x ≈ z. Then 〈r,y,α〉 name like z. The theorem is
a consequence of (70).

Let x be a surreal number. The functor nameord(x) yielding an ordinal
number is defined by

(Def. 21) there exists a non-zero transfinite sequence r of elements of R and there
exists a strictly decreasing uniq-surreal sequence y such that it = dom r =
domy and

∑y
κ=0 r(κ) ≈ x.

Now we state the proposition:

(104) Let us consider a non-zero transfinite sequence r of elements of R, a stric-
tly decreasing uniq-surreal sequence y, and a surreal number x. Suppose
dom r = domy and

∑y
κ=0 r(κ) ≈ x. Then nameord(x) = dom r. The

theorem is a consequence of (102).

Let x be a surreal number. The functor namer(x) yielding a non-zero trans-
finite sequence of elements of R is defined by

(Def. 22) there exists a strictly decreasing uniq-surreal sequence y such that dom y =
dom it and

∑y
κ=0 it(κ) ≈ x.

The functor namey(x) yielding a strictly decreasing uniq-surreal sequence is
defined by

(Def. 23) dom(namer(x)) = dom it and
∑it
κ=0 namer(x)(κ) ≈ x.

Now we state the propositions:

(105) dom(namer(x)) = nameord(x) = dom(namey(x)). The theorem is a con-
sequence of (104).

(106) 〈namer(x),namey(x),nameord(x)〉 name like x. The theorem is a conse-
quence of (105), (101), and (103).
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