Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/19593Pełny rekord metadanych
| Pole DC | Wartość | Język |
|---|---|---|
| dc.contributor.author | Pąk, Karol | - |
| dc.date.accessioned | 2026-01-09T11:17:18Z | - |
| dc.date.available | 2026-01-09T11:17:18Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.citation | Formalized Mathematics, Volume 33, Issue 1, Pages 11-23 | pl |
| dc.identifier.issn | 1426-2630 | - |
| dc.identifier.uri | http://hdl.handle.net/11320/19593 | - |
| dc.description.abstract | The concept of surreal numbers, as postulated by John Conway, represents a complex and multifaceted structure that encompasses a multitude of familiar number systems, including the real numbers, as integral components. In this study, we undertake the construction of the real numbers, commencing with the integers and dyadic rationals as preliminary steps. We proceed to contrast the resulting set of real numbers derived from our construction with the axiomatically defined set of real numbers based on Conway’s axiom. Our findings reveal that both approaches culminate in the same set. | pl |
| dc.language.iso | en | pl |
| dc.publisher | University of Białystok | pl |
| dc.rights | Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) | pl |
| dc.rights.uri | https://creativecommons.org/licenses/by-sa/4.0/ | pl |
| dc.subject | surreal number | pl |
| dc.subject | Conway’s game | pl |
| dc.subject | dyadic number | pl |
| dc.title | Surreal Dyadic and Real Numbers: A Formal Construction | pl |
| dc.type | Article | pl |
| dc.rights.holder | © 2025 The Author(s) | pl |
| dc.rights.holder | CC BY-SA 4.0 license | pl |
| dc.identifier.doi | 10.2478/forma-2025-0002 | - |
| dc.description.Affiliation | Faculty of Computer Science, University of Białystok, Poland | pl |
| dc.description.references | Vincent Bagayoko and Joris van der Hoeven. Surreal substructures. Fundamenta Mathematicae, 266(1):25–96, 2024. doi:10.4064/fm231020-23-2. | pl |
| dc.description.references | Wolfgang Bertram. On Conway’s numbers and games, the von Neumann universe, and pure set theory. ArXiv preprint arXiv:2501.04412, 2025. | pl |
| dc.description.references | John Horton Conway. On Numbers and Games. A K Peters Ltd., Natick, MA, second edition, 2001. ISBN 1-56881-127-6. | pl |
| dc.description.references | Ovidiu Costin and Philip Ehrlich. Integration on the surreals. Advances in Mathematics, 452:109823, 2024. doi:10.1016/j.aim.2024.109823. | pl |
| dc.description.references | Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions in type theory. The Journal of Symbolic Logic, 65(2):525–549, 2000. doi:10.2307/2586554. | pl |
| dc.description.references | Philip Ehrlich. The absolute arithmetic continuum and the unification of all numbers great and small. The Bulletin of Symbolic Logic, 18(1):1–45, 2012. doi:10.2178/bsl/1327328438. | pl |
| dc.description.references | Philp Ehrlich. Number systems with simplicity hierarchies: A generalization of Conway’s theory of surreal numbers. Journal of Symbolic Logic, 66(3):1231–1258, 2001. doi:10.2307/2695104. | pl |
| dc.description.references | Harry Gonshor. An Introduction to the Theory of Surreal Numbers. London Mathematical Society Lecture Note Series, 110. Cambridge University Press, 1986. ISBN 0521312051. | pl |
| dc.description.references | Donald E. Knuth. Surreal Numbers: How Two Ex-students Turned on to Pure Mathema tics and Found Total Happiness. Addison-Wesley, 1974. | pl |
| dc.description.references | Lionel Elie Mamane. Surreal numbers in Coq. In Jean-Christophe Filliˆatre, Christine Paulin-Mohring, and Benjamin Werner, editors, Types for Proofs and Programs, TYPES 2004, volume 3839 of LNCS, pages 170–185. Springer, 2004. doi:10.1007/11617990_11. | pl |
| dc.description.references | J. A. Nieto, J. A. Escalante-Javalera, C. A. Somera-Patrón, and E. J. Villasenor-Gonz´alez. Parity of dyadic rationals and surreal numbers. Far East Journal of Mathematical Sciences (FJMS), (2):155–167, May 2024. doi:10.17654/0972087124010. | pl |
| dc.description.references | Steven Obua. Partizan games in Isabelle/HOLZF. In Kamel Barkaoui, Ana Cavalcanti, and Antonio Cerone, editors, Theoretical Aspects of Computing – ICTAC 2006, volume 4281 of LNCS, pages 272–286. Springer, 2006. | pl |
| dc.description.references | Karol Pąk. Conway numbers – formal introduction. Formalized Mathematics, 31(1): 193–203, 2023. doi:10.2478/forma-2023-0018. | pl |
| dc.description.references | Karol Pąk. Integration of game theoretic and tree theoretic approaches to Conway numbers. Formalized Mathematics, 31(1):205–213, 2023. doi:10.2478/forma-2023-0019. | pl |
| dc.description.references | Karol Pąk. The ring of Conway numbers in Mizar. Formalized Mathematics, 31(1): 215–228, 2023. doi:10.2478/forma-2023-0020. | pl |
| dc.description.references | Karol Pąk and Cezary Kaliszyk. Conway normal form: Bridging approaches for comprehensive formalization of surreal numbers. In Yves Bertot, Temur Kutsia, and Michael Nor rish, editors, 15th International Conference on Interactive Theorem Proving, ITP 2024, September 9-14, 2024, Tbilisi, Georgia, volume 309 of LIPIcs, pages 29:1–29:18. Schloss Dagstuhl – Leibniz-Zentrum f¨ur Informatik, 2024. doi:10.4230/LIPICS.ITP.2024.29. | pl |
| dc.description.references | Matthew Roughan. Practically surreal: surreal arithmetic in Julia. SoftwareX, 9:293–298, 2019. doi:10.1016/j.softx.2019.03.005. | pl |
| dc.description.references | Alex Ryba, Philip Ehrlich, Richard Kenyon, Jeffrey Lagarias, James Propp, and Louis Kauffman. Conway’s mathematics after Conway. Notices of the American Mathematical Society, 69:1145–1155, 2022. doi:10.1090/noti2513. | pl |
| dc.description.references | Dominik Tomaszuk, Łukasz Szeremeta, and Artur Korniłowicz. MMLKG: Knowledge graph for mathematical definitions, statements and proofs. Scientific Data, 10(1), 2023. doi:10.1038/s41597-023-02681-3. | pl |
| dc.description.references | Claus Tøndering. Surreal numbers – an introduction. HTTP, version 1.7, December 2019. | pl |
| dc.description.references | The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013. | pl |
| dc.description.references | Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle framework. In Otmane Ait Mohamed, C´esar Mu˜noz, and Sofi`ene Tahar, editors, Theorem Proving in Higher Order Logics, pages 33–38. Springer Berlin Heidelberg, 2008. | pl |
| dc.identifier.eissn | 1898-9934 | - |
| dc.description.volume | 33 | pl |
| dc.description.issue | 1 | pl |
| dc.description.firstpage | 11 | pl |
| dc.description.lastpage | 23 | pl |
| dc.identifier.citation2 | Formalized Mathematics | pl |
| dc.identifier.orcid | 0000-0002-7099-1669 | - |
| Występuje w kolekcji(ach): | Formalized Mathematics, 2025, Volume 33, Issue 1 | |
Pliki w tej pozycji:
| Plik | Opis | Rozmiar | Format | |
|---|---|---|---|---|
| Surreal_Dyadic_and_Real_Numbers_A_Formal_Construction.pdf | 333,09 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL
