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Summary. The concept of surreal numbers, as postulated by John Con-
way, represents a complex and multifaceted structure that encompasses a multi-
tude of familiar number systems, including the real numbers, as integral compo-
nents. In this study, we undertake the construction of the real numbers, commen-
cing with the integers and dyadic rationals as preliminary steps. We proceed to
contrast the resulting set of real numbers derived from our construction with the
axiomatically defined set of real numbers based on Conway’s axiom. Our findings
reveal that both approaches culminate in the same set.
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Introduction

In his seminal book [3], John Conway introduces an axiomatic definition of
real numbers. Conway call a number x real number if −n < x < n for some
integer n and

x ≈ {x− 1, x− 1
2
, x− 1

3
, . . . |x+ 1, x+

1
2
, x+

1
3
, . . .}. (I.1)

This property is self-contained within the context of the surreal number system
[9], which is expressed using only the explicitly outlined conditions of the system
itself, and it does not rely on the standard real numbers used in mathematical
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analysis [6, 7]. Note that all these real numbers appear in the Day ω which
contains other numbers like infinitesimals and ω and the days formed previously
contain only dyadic rationals surreal numbers. Conway indicates these dyadic
numbers as exemplars of the reals, yet does not formally establish a connection
between the concepts of the reals or dyadic numbers and their counterparts in
mathematical analysis. The map that converts dyadic rationals into their surreal
counterparts, called as Dali function by Tøndering [20], has been analyzed in
[11, 17, 20].

In our formalization, we introduce the Dali function in two steps. First, we
define the recursive integer function sZ, as follows: the base step is given as
sZ(0) = 0, while sZ(n+ 1) = {sZ(n) | }, sZ(−n− 1) = { | sZ(−n)} for all n > 0
(see Def. 1). Then, sZ is used to define the base step of sD as follows: sD(d) =
sZ(d) for all d ∈ Z and {sD( j2p ) | sD( j+12p )} if d = 2j+1

2p+1 for some j ∈ Z, p ∈ N
(see Def. 5). We prove that the values of the function sD have uniq-surreal,
i.e. sD(d) = UniqueNosD(d) for every dyadic rational d, or more formally, sD(d)
is equal to our construction of the ≈ equivalence class representative of sD(d).
This property is important for the next stage of our construction.

We subsequently employ the function sS to establish a homeomorphism be-
tween the real numbers and their Conway representations. The fundamental
premise of this construction is that the sequences of dyadic rational numbers
{ dr·2

n−1e
2n }n>0 and { br·2

n+1c
2n }n>0 represent successive approximations of a given

real number r. Moreover, these sequences are non-decreasing and non-increasing,
respectively, and the relation the inequality dr·2

n−1e
2n < r < br·2n+1c

2n is satisfied
for all values of n > 0. This allows us to associate any real number r with the
Conway number sR(r) (see Def. 6, Def. 7), which is equal to:

UniqueNo

{{
sD

(dr · 2n − 1e
2n

)
| n ∈ N

}
|
{

sD

(br · 2n + 1c
2n

)
| n ∈ N

}}
(I.2)

Note that we apply additionally UniqueNo to obtain sR(d) = sD(r) for each
dyadic number d.

We prove that that the function sR preserves the identity elements for both
addition (see Th47) and multiplication (see Th48). Furthermore, it is shown that
it respects the operations of addition (see Th55) and multiplication (see Th57).
We conduct also a comparison between the set of values of function sR, and
the set of real numbers that fulfils the Conway property. We prove that sR(r)
satisfies Conway’s property for all r ∈ R and that for each real number x, there
exists a real number r such that x ≈ sR(r).

As in our earlier Mizar formalizations of Conway numbers [16], a detailed
exposition of the corresponding informal background can be found in [1] (see
also the Coq [10] and Isabelle [12], [22] developments). Within the Mizar fra-
mework, we are naturally bound to set theory [2] (where cross-dependencies
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between formal notions can be explored more effectively using recent graph re-
presentation [19]), rather than to the inductive-inductive HoTT approach [5],
which arguably provides a more natural foundation (cf. Sect. 11.6 of [21]). Ha-
ving a formalization of real surreal numbers at hand, we may then follow the
path of Conway, Kruskal, and Norton [8], with the goal of developing a surreal
analysis, in which integration plays a central role [4], [18].

1. Mappings between Integers and Surreal Integers

From now on A, B, O denote ordinal numbers, o denotes an object, x, y, z
denote surreal numbers, and n, m denote natural numbers.

The functor sZ yielding a many sorted set indexed by Z is defined by

(Def. 1) it(0) = 0No and it(n+1) = 〈〈{it(n)}, ∅〉〉 and it(−(n+ 1)) = 〈〈∅, {it(−n)}〉〉.
Now we state the proposition:

(1) sZ(n), sZ(−n) ∈ Dayn.
Proof: Define P[natural number] ≡ sZ($1), sZ(−$1) ∈ Day$1. For every
n such that P[n] holds P[n+ 1]. For every n, P[n]. �

Let i be an integer. Let us observe that sZ(i) is surreal. Now we state the
propositions:

(2) If x ∈ Dayn, then sZ(−n) ¬ x ¬ sZ(n).
Proof: Define P[natural number] ≡ for every x such that x ∈ Day$1 holds
sZ(−$1) ¬ x ¬ sZ($1). P[0]. For every n such that P[n] holds P[n + 1].
For every n, P[n]. �

(3) Let us consider integers i, j. If i < j, then sZ(i) < sZ(j).
Proof: For every natural number k such that k ­ 1 holds sZ(n) < sZ(n+
k). For every natural number k such that k ­ 1 holds sZ(−(n+ k)) <
sZ(−n). Consider I being a natural number such that i = I or i = −I.
Consider J being a natural number such that j = J or j = −J . �

Let n be a positive natural number. Let us observe that sZ(n) is positive.
Now we state the propositions:

(4) (i) n = born sZ(n), and

(ii) n = born sZ(−n).
Proof: sZ(n) ∈ Dayn. For every O such that sZ(n) ∈ DayO holds n ⊆ O.
sZ(−n) ∈ Dayn. For every O such that sZ(−n) ∈ DayO holds n ⊆ O. �

(5) (i) born≈ sZ(n) = n, and

(ii) born≈ sZ(−n) = n.
Proof: born sZ(n) = n. For every surreal number y such that y ≈ sZ(n)
holds born sZ(n) ⊆ born y. born sZ(−n) = n. For every surreal number y
such that y ≈ sZ(−n) holds born sZ(−n) ⊆ born y. �
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(6) 0No ¬ sZ(n). The theorem is a consequence of (3).

(7) LsZ(−n) = ∅ = RsZ(n).
Proof: LsZ(−n) = ∅. �

Let i be an integer. Note that sZ(i) is unique surreal.
Let us consider integers i, j. Now we state the propositions:

(8) If sZ(i) = sZ(j), then i = j.

(9) i < j if and only if sZ(i) < sZ(j).

(10) Let us consider an integer i, and x. Then

(i) 〈〈{sZ(i− 1)}, {sZ(i+ 1)}〉〉 is a surreal number, and

(ii) if x = 〈〈{sZ(i− 1)}, {sZ(i+ 1)}〉〉, then x ≈ sZ(i).

Proof: Set S = sZ(i). sZ(i − 1) < S. LS � {x} � RS by [14, (21)], [13,
(43)]. S < sZ(i+ 1). �

(11) sZ(1) = 1No.

(12) Let us consider an integer i. Then −sZ(i) = sZ(−i).
Proof: Define P[natural number] ≡ −sZ($1) = sZ(−$1). If P[n], then
P[n + 1] by [15, (22),(7),(21)]. P[n]. Consider o being a natural number
such that i = o or i = −o. �

(13) sZ(n) + sZ(m) = sZ(n+m).
Proof: Define P[natural number] ≡ sZ($1) + 1No = sZ($1 + 1). sZ(0) =
0No and sZ(1) = 1No. For every n such that P[n] holds P[n + 1]. For
every n, P[n]. Define Q[natural number] ≡ sZ(n) + sZ($1) = sZ(n + $1).
For every m such that Q[m] holds Q[m+ 1]. For every m, Q[m]. �

Let us consider integers i, j. Now we state the propositions:

(14) sZ(i) + sZ(j) ≈ sZ(i+ j).
Proof: Define P[natural number] ≡ for every n and m such that n+m =
$1 holds sZ(n) + sZ(−m) ≈ sZ(n −m). P[0]. For every natural number k
such that P[k] holds P[k+ 1]. For every natural number k, P[k]. Consider
k being a natural number such that i = k or i = −k. Consider n being
a natural number such that j = n or j = −n. �

(15) sZ(i) · sZ(j) ≈ sZ(i · j).
Proof: Define P[natural number] ≡ for every n and m such that n+m =
$1 holds sZ(n)·sZ(m) ≈ sZ(n·m). For every natural number k such that for
every n such that n < k holds P[n] holds P[k]. For every natural number
k, P[k]. Consider k being a natural number such that i = k or i = −k.
Consider n being a natural number such that j = n or j = −n. �

(16) If x = 〈〈{y}, ∅〉〉 and y < 0No, then x ≈ 0No.
(17) Suppose x = 〈〈{y}, ∅〉〉 and bornx is finite and 0No ¬ y. Then there exists

a natural number n such that
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(i) x ≈ sZ(n+ 1), and

(ii) sZ(n) ¬ y < sZ(n+ 1), and

(iii) n ∈ bornx.

Proof: Reconsider a = bornx as a natural number. Define O[natural
number] ≡ Lx � {sZ($1)}. O[a]. Consider k being a natural number such
that O[k] and for every natural number n such that O[n] holds k ¬ n.
k 6= 0. Reconsider k1 = k − 1 as a natural number. For every z such that
Lx � {z} � Rx holds born sZ(k) ⊆ born z. sZ(k1) ¬ y. k1 ⊆ born y. �

2. Dyadic Numbers

Let r be a rational number. We say that r is dyadic-like if and only if

(Def. 2) there exists a natural number n such that den r = 2n.

Now we state the proposition:

(18) Let us consider a rational number r. Then r is dyadic-like if and only
if there exists an integer i and there exists a natural number n such that
r = i

2n .
Proof: If r is dyadic-like, then there exists an integer i and there exists
a natural number n such that r = i

2n . Consider w being a natural number
such that i = (num r) ·w and 2n = (den r) ·w. Consider t being an element
of N such that w = 2t and t ¬ n. �

Let i be an integer and n be a natural number. Let us observe that i
2n

is dyadic-like and every integer is dyadic-like. Let x be a dyadic-like rational
number. Note that −x is dyadic-like. Let y be a dyadic-like rational number.
One can check that x + y is dyadic-like and x + y is dyadic-like and x · y is
dyadic-like.

The functor D yielding a set is defined by

(Def. 3) o ∈ it iff o is a dyadic-like rational number.

Let us observe that D is rational-membered and non empty and every ele-
ment of D is dyadic-like. A Dyadic is a dyadic-like rational number. From now on
d, d1, d2 denote Dyadics. Let n be a natural number. The functor D(n) yielding
a subset of D is defined by

(Def. 4) d ∈ it iff there exists an integer i such that d = i
2n .

In the sequel i, j denote integers and n, m, p denote natural numbers.
Now we state the propositions:

(19) If n ¬ m, then D(n) ⊆ D(m).
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(20) d ∈ (D(n+ 1)) \ (D(n)) if and only if there exists an integer i such that
d = 2·i+1

2n+1 .
Proof: If d ∈ (D(n+ 1)) \ (D(n)), then there exists an integer i such that
d = 2·i+1

2n+1 . d /∈ D(n). �

(21) Z = D(0).

(22) rng sZ ⊆ DayN. The theorem is a consequence of (1).

(23) (i) d is an integer, or

(ii) there exists p and there exists i such that d = 2·i+1
2p+1 .

Proof: Consider i being an integer, n being a natural number such that
d = i

2n . Define M[natural number] ≡ d ∈ D($1 + 1). n 6= 0. Consider m
being a natural number such that M[m] and for every natural number n
such that M[n] holds m ¬ n. d /∈ D(m). There exists an integer i such
that d = 2·i+1

2m+1 . �

3. Mappings between Dyadic Numbers and Surreal Dyadic Numbers

The functor sD yielding a many sorted set indexed by D is defined by

(Def. 5) it(i) = sZ(i) and it(2·j+12p+1 ) = 〈〈{it( j2p )}, {it( j+12p )}〉〉.
Let us consider d. Note that sD(d) is surreal. Now we state the propositions:

(24) d1 < d2 if and only if sD(d1) < sD(d2). The theorem is a consequence of
(18).

(25) (i) if 0No ¬ z and z ∈ Dayn and z 6≈ sD(n), then there exist natural
numbers x, y, p such that z ≈ sD(x+ y

2p ) and y < 2p and x+ p < n,
and

(ii) for every natural numbers x, y, p such that y < 2p and x + p < n

holds 0No ¬ sD(x+ y
2p ) ∈ Dayn.

Proof: Define P[natural number] ≡ for every surreal number s such that
s ∈ Day$1 and 0No ¬ s holds s ≈ sD($1) or there exists a Dyadic d and
there exist natural numbers x, y, p such that s ≈ sD(d) and y < 2p and
d = x + y

2p and x + p < $1 and for every natural numbers x, y, p such
that y < 2p and x + p < $1 holds 0No ¬ sD(x + y

2p ) ∈ Day$1. P[0]. For
every n such that P[n] holds P[n+ 1]. For every n, P[n]. If 0No ¬ z and
z ∈ Dayn and z 6≈ sD(n), then there exist natural numbers x, y, p such
that z ≈ sD(x+ y

2p ) and y < 2p and x+ p < n. �

(26) If 2 ·m+ 1 < 2p, then born sD(n+ 2·m+1
2p ) = n+ p+ 1.

Proof: Set d = n+ 2·m+12p . sD(d) 6≈ sD(n+p). 0No ¬ sD(d) ∈ Day(n+p+1).
For every O such that sD(d) ∈ DayO holds n+ p+ 1 ⊆ O. �



Surreal dyadic and real numbers: a formal construction 17

(27) sD(−d) = −sD(d).
Proof: Define P[natural number] ≡ for every d such that d ∈ D($1)
holds sD(−d) = −sD(d). P[0]. If P[n], then P[n + 1]. P[n]. Consider i
being an integer, n being a natural number such that d = i

2n . �

(28) If 0 ¬ d and d is not an integer, then there exist natural numbers n, m,
p such that d = n+ 2·m+1

2p+1 and 2 ·m+ 1 < 2p+1.
Proof: Consider p, i such that d = 2·i+1

2p+1 . i ­ 0. �

(29) 0 ¬ d if and only if 0No ¬ sD(d). The theorem is a consequence of (24).

(30) sD(d) ∈ Born≈ sD(d). The theorem is a consequence of (28), (29), (26),
(27), (24), and (25).

(31) Suppose bornx is finite and Lx ⊕ Rx ⊆ 1. Then there exists an integer i
such that x ≈ sZ(i). The theorem is a consequence of (16), (17), and (12).

Let us consider natural numbers x1, x2, y1, y2, p1, p2. Now we state the
propositions:

(32) If x1 + y1
2p1 = x2 + y2

2p2 and y1 < 2p1 and y2 < 2p2 , then x1 = x2.

(33) If x1 + y1
2p1 < x2 + y2

2p2 and y1 < 2p1 and y2 < 2p2 , then x1 ¬ x2.
(34) Let us consider natural numbers x1, x2, p1, p2. If 2·x1+12p1 = x2

2p2 , then
p1 ¬ p2.

(35) If x ∈ Dayn, then there exists a Dyadic d such that x ≈ sD(d) and
sD(d) ∈ Dayn. The theorem is a consequence of (30), (25), (28), (32),
(34), (26), and (27).

(36) There exists n such that sD(d) ∈ Dayn. The theorem is a consequence
of (27).

Let us consider d. One can verify that sD(d) is unique surreal. Now we state
the propositions:

(37) x is a unique surreal number and bornx is finite if and only if there exists
a Dyadic d such that x = sD(d). The theorem is a consequence of (35) and
(36).

(38) Let us consider an integer i, a natural number p, and a surreal number
x. Then

(i) 〈〈{sD( i2p )}, {sD( i+22p )}〉〉 is a surreal number, and

(ii) if x = 〈〈{sD( i2p )}, {sD( i+22p )}〉〉, then x ≈ sD( i+12p ).

The theorem is a consequence of (24), (10), and (27).

(39) sD(d1) + sD(d2) ≈ sD(d1 + d2).
Proof: Define P[natural number] ≡ for every natural numbers n1, n2 such
that n1 + n2 ¬ $1 and n1 ¬ n2 for every d1 and d2 such that d1 ∈ D(n1)
and d2 ∈ D(n2) holds sD(d1) + sD(d2) ≈ sD(d1 + d2). P[0]. If P[m], then
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P[m+ 1]. P[m]. Consider i1 being an integer, n1 being a natural number
such that d1 = i1

2n1 . Consider i2 being an integer, n2 being a natural
number such that d2 = i2

2n2 . d2 ∈ D(n2) ⊆ D(n1 + n2). �

(40) sD(d1) · sD(d2) ≈ sD(d1 · d2).
Proof: Define P[natural number] ≡ for every natural numbers n1, n2 such
that n1+n2 ¬ $1 and n1 ¬ n2 for every d1 and d2 such that d1 ∈ D(n1) and
d2 ∈ D(n2) holds sD(d1) · sD(d2) ≈ sD(d1 ·d2). P[0]. If P[m], then P[m+1].
P[m]. Consider i1 being an integer, n1 being a natural number such that
d1 = i1

2n1 . Consider i2 being an integer, n2 being a natural number such
that d2 = i2

2n2 . d2 ∈ D(n2) ⊆ D(n1 + n2). �

4. Mappings between Real Numbers and Surreal Real Numbers

In the sequel r, r1, r2 denote real numbers.
The functor s′R yielding a many sorted set indexed by R is defined by

(Def. 6) it(r) = 〈〈the set of all sD( dr·2
n−1e
2n ), the set of all sD( br·2

m+1c
2m )〉〉.

Now we state the proposition:

(41) dr·2n−1e
2n < r < br·2n+1c

2n .

Let us consider r. Note that s′R(r) is surreal.
The functor sR yielding a many sorted set indexed by R is defined by

(Def. 7) it(r) = UniqueNo(s
′
R(r)).

Let us consider r. Note that sR(r) is surreal and sR(r) is unique surreal. Now
we state the propositions:

(42) x ∈ Ls′R(r) if and only if there exists n such that x = sD( dr·2
n−1e
2n ).

(43) x ∈ Rs′R(r) if and only if there exists n such that x = sD( br·2
n+1c
2n ).

(44) sD( dr·2
n−1e
2n ) < s′R(r) < sD( br·2

n+1c
2n ). The theorem is a consequence of

(42) and (43).

(45) Let us consider integers i1, i2, and natural numbers n1, n2. Suppose
i1
2n1 <

i2
2n2 . Then i1

2n1 <
i1·2n2 ·2+1
2n1+n2+1 ¬

i2·2n1 ·2−1
2n1+n2+1 <

i2
2n2 .

(46) s′R(d) ≈ sD(d) = sR(d).
Proof: Set R3 = s′R(d). Set D2 = sD(d). Consider i being an integer, k
being a natural number such that d = i

2k . LR3 � {D2} � RR3 . For every
z such that LR3 � {z} � RR3 holds bornD2 ⊆ born z. �

(47) sR(0) = 0No. The theorem is a consequence of (46).

(48) sR(1) = 1No. The theorem is a consequence of (46) and (11).

(49) born s′R(r) ⊆ ω.
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(50) s′R(r1) < s′R(r2) if and only if r1 < r2.
Proof: Set R1 = s′R(r1). Set R2 = s′R(r2). If R1 < R2, then r1 < r2.
Consider k being a natural number such that 12k ¬ r2−r1. Set K2 = 2k+1.

sD( bK2·r1+1cK2
) ¬ sD( dr2·K2−1eK2

). R1 < sD( bK2·r1+1cK2
). sD( dr2·K2−1eK2

) ¬ R2. �

(51) sR(r1) < sR(r2) if and only if r1 < r2.
Proof: If sR(r1) < sR(r2), then r1 < r2. sR(r1) < s′R(r2). �

Let r be a positive real number. One can check that sR(r) is positive. Now
we state the propositions:

(52) born sR(r) = ω if and only if r is not a Dyadic. The theorem is a conse-
quence of (37), (46), (49), (35), and (51).

(53) If r1 < r2, then there exists n such that br1·2
n+1c
2n < r2.

(54) If r1 < r2, then there exists n such that r1 <
dr2·2n−1e
2n .

(55) sR(r1) + sR(r2) ≈ sR(r1 + r2).

(56) −sR(r) ≈ sR(−r).
(57) sR(r1) · sR(r2) ≈ sR(r1 · r2).
(58) If n > 0, then sZ(n)−1 ≈ sR( 1n). The theorem is a consequence of (9),

(46), (57), and (48).

5. *Real Surreal Numbers

Let x be a surreal number. The functor real≈(x) yielding a surreal number
is defined by

(Def. 8) Lit = the set of all x−sZ(n)−1 where n is a positive natural number and
Rit = the set of all x+ sZ(n)−1 where n is a positive natural number.

We say that x is *real if and only if

(Def. 9) x ≈ real≈(x) and there exists a natural number n such that sZ(−n) <
x < sZ(n).

Now we state the propositions:

(59) Let us consider a positive natural number n.
Then x− sZ(n)−1 < real≈(x) < x+ sZ(n)−1.

(60) If x ≈ y, then real≈(x) ≈ real≈(y).

(61) If x ≈ y and x is *real, then y is *real.

Let r be a real number. One can check that s′R(r) is *real and sR(r) is
*real and there exists a unique surreal number which is *real. Now we state the
proposition:

(62) x is *real if and only if there exists r such that x ≈ sR(r).
Proof: If x is *real, then there exists r such that x ≈ sR(r). �
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Let x be a *real surreal number. One can check that −x is *real. Let y be
a *real surreal number. Let us note that x+ y is *real and x · y is *real.

6. Surreal Ordinals

Let x be a surreal number. We say that x is On if and only if

(Def. 10) Rx = ∅.
Let us observe that 0No is On. Let us consider n. One can check that sZ(n)

isOn and there exists a unique surreal number which isOn. Let A be an ordinal
number. The functor ordinalOn(A) yielding a set is defined by

(Def. 11) there exists a transfinite sequence S such that it = S(A) and domS =
succA and for every O such that succO ∈ succA holds S(succO) =
〈〈{S(O)}, ∅〉〉 and for every O such that O ∈ succA and O is limit ordinal
holds S(O) = 〈〈 rng(S�O), ∅〉〉.

Now we state the propositions:

(63) Let us consider a transfinite sequence S. Suppose domS = succA and
for every O such that succO ∈ succA holds S(succO) = 〈〈{S(O)}, ∅〉〉 and
for every O such that O ∈ succA and O is limit ordinal holds S(O) =
〈〈 rng(S�O), ∅〉〉. If O ∈ succA, then S(O) = ordinalOn(O).
Proof: Consider S1 being a transfinite sequence such that ordinalOn(O) =
S1(O) and domS1 = succO and for every B such that succB ∈ succO
holds S1(succB) = 〈〈{S1(B)}, ∅〉〉 and for every B such that B ∈ succO
and B is limit ordinal holds S1(B) = 〈〈 rng(S1�B), ∅〉〉. Define P[ordinal
number] ≡ if $1 ⊆ O, then S1($1) = S($1). For every ordinal number B
such that for every ordinal number C such that C ∈ B holds P[C] holds
P[B]. For every ordinal number B, P[B]. �

(64) ordinalOn(0) = 0No.

(65) ordinalOn(succA) = 〈〈{ordinalOn(A)}, ∅〉〉. The theorem is a consequence
of (63).

(66) Suppose A is limit ordinal. Then there exists a set X such that

(i) ordinalOn(A) = 〈〈X, ∅〉〉, and

(ii) for every o, o ∈ X iff there exists B such that B ∈ A and o =
ordinalOn(B).

Proof: Set B = succA. Consider S being a transfinite sequence such
that ordinalOn(A) = S(A) and domS = B and for every O such that
succO ∈ B holds S(succO) = 〈〈{S(O)}, ∅〉〉 and for every O such that
O ∈ B and O is limit ordinal holds S(O) = 〈〈 rng(S�O), ∅〉〉. If o ∈ X, then
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there exists B such that B ∈ A and o = ordinalOn(B). ordinalOn(C) =
S(C) = (S�A)(C). �

(67) ordinalOn(A) ∈ DayA.
Proof: Define P[ordinal number] ≡ ordinalOn($1) ∈ Day$1. For every
ordinal number D such that for every ordinal number C such that C ∈ D
holds P[C] holds P[D]. For every ordinal number D, P[D]. �

Let us consider A. One can check that ordinalOn(A) is surreal and
ordinalOn(A) is On. Now we state the propositions:

(68) ordinalOn(A) < ordinalOn(B) if and only if A ∈ B.
Proof: If ordinalOn(A) < ordinalOn(B), then A ∈ B. �

(69) If x ∈ DayA, then x ¬ ordinalOn(A).
Proof: Define P[ordinal number] ≡ for every x such that x ∈ Day$1
holds x ¬ ordinalOn($1). For every ordinal number D such that for every
ordinal number C such that C ∈ D holds P[C] holds P[D]. For every
ordinal number D, P[D]. �

(70) born ordinalOn(A) = A.
Proof: ordinalOn(A) ∈ DayA. For every O such that ordinalOn(A) ∈
DayO holds A ⊆ O. �

(71) If x ∈ LordinalOn(A), then there exists B such that B ∈ A and x =
ordinalOn(B). The theorem is a consequence of (66) and (65).

(72) sZ(n) = ordinalOn(n).
Proof: Define P[natural number] ≡ sZ($1) = ordinalOn($1). P[0]. If
P[m], then P[m+ 1]. P[m]. �

Let O be a On surreal number. One can verify that UniqueNo(O) is On.
Let A be an ordinal number. The functor OrdinalOn(A) yielding aOn unique

surreal number is defined by the term

(Def. 12) UniqueNo(ordinalOn(A)).

Now we state the propositions:

(73) (i) OrdinalOn(A) ≈ ordinalOn(A), and

(ii) born OrdinalOn(A) = A.
Proof: born≈OrdinalOn(A) = born≈ ordinalOn(A) ⊆ born ordinalOn(A) =
A. A ⊆ born OrdinalOn(A). �

(74) OrdinalOn(A) ∈ DayA. The theorem is a consequence of (73).

(75) OrdinalOn(A) < OrdinalOn(B) if and only if A ∈ B.
Proof: OrdinalOn(A) ≈ ordinalOn(A) and OrdinalOn(B) ≈ ordinalOn(B).
If OrdinalOn(A) < OrdinalOn(B), then A ∈ B.
OrdinalOn(A) < ordinalOn(B). �
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(76) If x ∈ DayA, then x ¬ OrdinalOn(A). The theorem is a consequence of
(69) and (73).

(77) If x isOn, then there exists A such that x ≈ OrdinalOn(A). The theorem
is a consequence of (73).

(78) sZ(n) = OrdinalOn(n). The theorem is a consequence of (72) and (73).

(79) OrdinalOn(succA) = 〈〈{OrdinalOn(A)}, ∅〉〉.
Proof: Set O1 = OrdinalOn(A). Set x = 〈〈{O1}, ∅〉〉. bornO1 = A. If
o ∈ {O1} ∪ ∅, then there exists O such that O ∈ succA and o ∈ DayO.
ordinalOn(succA) = 〈〈{ordinalOn(A)}, ∅〉〉. O1 ≈ ordinalOn(A). For every
surreal number y such that y ≈ x holds succA ⊆ born y. For every z such
that z ∈ Born≈x and Lz ∪Rz is unique surreal-membered and x 6= z holds
Lx ⊕ Rx ∈ Lz ⊕ Rz . ordinalOn(succA) ≈ OrdinalOn(succA). �

(80) There exists a On surreal number x such that

(i) bornx = A, and

(ii) OrdinalOn(A) ≈ x, and

(iii) for every o, o ∈ Lx iff there exists B such that B ∈ A and o =
OrdinalOn(B).

Proof: Define P[object] ≡ there exists B such that B ∈ A and $1 =
OrdinalOn(B). Consider X being a set such that o ∈ X iff o ∈ DayA
and P[o]. If o ∈ X ∪ ∅, then there exists O such that O ∈ A and o ∈
DayO. Reconsider x = 〈〈X, ∅〉〉 as a surreal number. For every O such that
x ∈ DayO holds A ⊆ O. LordinalOn(A) � {x}. Lx � {ordinalOn(A)}.
OrdinalOn(A) ≈ ordinalOn(A) ≈ x. o ∈ DayB ⊆ DayA. �

Let α, β be On surreal numbers. Observe that α+ β is On and α · β is On.
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