

Surreal Dyadic and Real Numbers: A Formal Construction

Karol Pąk

Faculty of Computer Science
University of Białystok
Poland

Summary. The concept of surreal numbers, as postulated by John Conway, represents a complex and multifaceted structure that encompasses a multitude of familiar number systems, including the real numbers, as integral components. In this study, we undertake the construction of the real numbers, commencing with the integers and dyadic rationals as preliminary steps. We proceed to contrast the resulting set of real numbers derived from our construction with the axiomatically defined set of real numbers based on Conway's axiom. Our findings reveal that both approaches culminate in the same set.

MSC: 03H05 12J15 68V20

Keywords: surreal number; Conway's game; dyadic number

MML identifier: SURREALN, version: 8.1.14 5.90.1489

INTRODUCTION

In his seminal book [3], John Conway introduces an axiomatic definition of real numbers. Conway call a number x *real* number if $-n < x < n$ for some integer n and

$$x \approx \{x - 1, x - \frac{1}{2}, x - \frac{1}{3}, \dots | x + 1, x + \frac{1}{2}, x + \frac{1}{3}, \dots\}. \quad (\text{I.1})$$

This property is self-contained within the context of the surreal number system [9], which is expressed using only the explicitly outlined conditions of the system itself, and it does not rely on the standard real numbers used in mathematical

analysis [6, 7]. Note that all these real numbers appear in the Day ω which contains other numbers like infinitesimals and ω and the days formed previously contain only dyadic rationals surreal numbers. Conway indicates these dyadic numbers as exemplars of the *reals*, yet does not formally establish a connection between the concepts of the reals or dyadic numbers and their counterparts in mathematical analysis. The map that converts dyadic rationals into their surreal counterparts, called as *Dali* function by Tøndering [20], has been analyzed in [11, 17, 20].

In our formalization, we introduce the *Dali* function in two steps. First, we define the recursive integer function $s_{\mathbb{Z}}$, as follows: the base step is given as $s_{\mathbb{Z}}(0) = 0$, while $s_{\mathbb{Z}}(n+1) = \{s_{\mathbb{Z}}(n) \mid \}$, $s_{\mathbb{Z}}(-n-1) = \{\mid s_{\mathbb{Z}}(-n)\}$ for all $n > 0$ (see Def. 1). Then, $s_{\mathbb{Z}}$ is used to define the base step of $s_{\mathbb{D}}$ as follows: $s_{\mathbb{D}}(d) = s_{\mathbb{Z}}(d)$ for all $d \in \mathbb{Z}$ and $\{s_{\mathbb{D}}(\frac{j}{2^p}) \mid s_{\mathbb{D}}(\frac{j+1}{2^p})\}$ if $d = \frac{2j+1}{2^{p+1}}$ for some $j \in \mathbb{Z}$, $p \in \mathbb{N}$ (see Def. 5). We prove that the values of the function $s_{\mathbb{D}}$ have **uniq-surreal**, i.e. $s_{\mathbb{D}}(d) = \text{Unique}_{\mathbf{No}} s_{\mathbb{D}}(d)$ for every dyadic rational d , or more formally, $s_{\mathbb{D}}(d)$ is equal to our construction of the \approx equivalence class representative of $s_{\mathbb{D}}(d)$. This property is important for the next stage of our construction.

We subsequently employ the function $s_{\mathbb{S}}$ to establish a homeomorphism between the real numbers and their Conway representations. The fundamental premise of this construction is that the sequences of dyadic rational numbers $\{\frac{\lfloor r \cdot 2^n - 1 \rfloor}{2^n}\}_{n>0}$ and $\{\frac{\lfloor r \cdot 2^n + 1 \rfloor}{2^n}\}_{n>0}$ represent successive approximations of a given real number r . Moreover, these sequences are non-decreasing and non-increasing, respectively, and the relation the inequality $\frac{\lfloor r \cdot 2^n - 1 \rfloor}{2^n} < r < \frac{\lfloor r \cdot 2^n + 1 \rfloor}{2^n}$ is satisfied for all values of $n > 0$. This allows us to associate any real number r with the Conway number $s_{\mathbb{R}}(r)$ (see Def. 6, Def. 7), which is equal to:

$$\text{Unique}_{\mathbf{No}} \left\{ \left\{ s_{\mathbb{D}} \left(\frac{\lfloor r \cdot 2^n - 1 \rfloor}{2^n} \right) \mid n \in \mathbb{N} \right\} \mid \left\{ s_{\mathbb{D}} \left(\frac{\lfloor r \cdot 2^n + 1 \rfloor}{2^n} \right) \mid n \in \mathbb{N} \right\} \right\} \quad (\text{I.2})$$

Note that we apply additionally $\text{Unique}_{\mathbf{No}}$ to obtain $s_{\mathbb{R}}(d) = s_{\mathbb{D}}(r)$ for each dyadic number d .

We prove that the function $s_{\mathbb{R}}$ preserves the identity elements for both addition (see Th47) and multiplication (see Th48). Furthermore, it is shown that it respects the operations of addition (see Th55) and multiplication (see Th57). We conduct also a comparison between the set of values of function $s_{\mathbb{R}}$, and the set of *real* numbers that fulfils the Conway property. We prove that $s_{\mathbb{R}}(r)$ satisfies Conway's property for all $r \in \mathbb{R}$ and that for each *real* number x , there exists a real number r such that $x \approx s_{\mathbb{R}}(r)$.

As in our earlier Mizar formalizations of Conway numbers [16], a detailed exposition of the corresponding informal background can be found in [1] (see also the Coq [10] and Isabelle [12], [22] developments). Within the Mizar framework, we are naturally bound to set theory [2] (where cross-dependencies

between formal notions can be explored more effectively using recent graph representation [19]), rather than to the inductive-inductive HoTT approach [5], which arguably provides a more natural foundation (cf. Sect. 11.6 of [21]). Having a formalization of real surreal numbers at hand, we may then follow the path of Conway, Kruskal, and Norton [8], with the goal of developing a surreal analysis, in which integration plays a central role [4], [18].

1. MAPPINGS BETWEEN INTEGERS AND SURREAL INTEGERS

From now on A, B, O denote ordinal numbers, o denotes an object, x, y, z denote surreal numbers, and n, m denote natural numbers.

The functor $s_{\mathbb{Z}}$ yielding a many sorted set indexed by \mathbb{Z} is defined by

(Def. 1) $it(0) = \mathbf{0}_{\mathbf{No}}$ and $it(n+1) = \langle \{it(n)\}, \emptyset \rangle$ and $it(-(n+1)) = \langle \emptyset, \{it(-n)\} \rangle$.

Now we state the proposition:

(1) $s_{\mathbb{Z}}(n), s_{\mathbb{Z}}(-n) \in \text{Day}n$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv s_{\mathbb{Z}}(\$1), s_{\mathbb{Z}}(-\$1) \in \text{Day}\1 . For every n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every n , $\mathcal{P}[n]$. \square

Let i be an integer. Let us observe that $s_{\mathbb{Z}}(i)$ is surreal. Now we state the propositions:

(2) If $x \in \text{Day}n$, then $s_{\mathbb{Z}}(-n) \leq x \leq s_{\mathbb{Z}}(n)$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv$ for every x such that $x \in \text{Day}\$1$ holds $s_{\mathbb{Z}}(-\$1) \leq x \leq s_{\mathbb{Z}}(\$1)$. $\mathcal{P}[0]$. For every n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every n , $\mathcal{P}[n]$. \square

(3) Let us consider integers i, j . If $i < j$, then $s_{\mathbb{Z}}(i) < s_{\mathbb{Z}}(j)$.

PROOF: For every natural number k such that $k \geq 1$ holds $s_{\mathbb{Z}}(n) < s_{\mathbb{Z}}(n+k)$. For every natural number k such that $k \geq 1$ holds $s_{\mathbb{Z}}(-(n+k)) < s_{\mathbb{Z}}(-n)$. Consider I being a natural number such that $i = I$ or $i = -I$. Consider J being a natural number such that $j = J$ or $j = -J$. \square

Let n be a positive natural number. Let us observe that $s_{\mathbb{Z}}(n)$ is positive.

Now we state the propositions:

(4) (i) $n = \text{born } s_{\mathbb{Z}}(n)$, and

(ii) $n = \text{born } s_{\mathbb{Z}}(-n)$.

PROOF: $s_{\mathbb{Z}}(n) \in \text{Day}n$. For every O such that $s_{\mathbb{Z}}(n) \in \text{Day}O$ holds $n \subseteq O$. $s_{\mathbb{Z}}(-n) \in \text{Day}n$. For every O such that $s_{\mathbb{Z}}(-n) \in \text{Day}O$ holds $n \subseteq O$. \square

(5) (i) $\text{born}_{\approx} s_{\mathbb{Z}}(n) = n$, and

(ii) $\text{born}_{\approx} s_{\mathbb{Z}}(-n) = n$.

PROOF: $\text{born } s_{\mathbb{Z}}(n) = n$. For every surreal number y such that $y \approx s_{\mathbb{Z}}(n)$ holds $\text{born } s_{\mathbb{Z}}(n) \subseteq \text{born } y$. $\text{born } s_{\mathbb{Z}}(-n) = n$. For every surreal number y such that $y \approx s_{\mathbb{Z}}(-n)$ holds $\text{born } s_{\mathbb{Z}}(-n) \subseteq \text{born } y$. \square

(6) $\mathbf{0}_{\mathbf{No}} \leq s_{\mathbb{Z}}(n)$. The theorem is a consequence of (3).

(7) $L_{s_{\mathbb{Z}}(-n)} = \emptyset = R_{s_{\mathbb{Z}}(n)}$.

PROOF: $L_{s_{\mathbb{Z}}(-n)} = \emptyset$. \square

Let i be an integer. Note that $s_{\mathbb{Z}}(i)$ is unique surreal.

Let us consider integers i, j . Now we state the propositions:

(8) If $s_{\mathbb{Z}}(i) = s_{\mathbb{Z}}(j)$, then $i = j$.

(9) $i < j$ if and only if $s_{\mathbb{Z}}(i) < s_{\mathbb{Z}}(j)$.

(10) Let us consider an integer i , and x . Then

(i) $\{s_{\mathbb{Z}}(i-1)\}, \{s_{\mathbb{Z}}(i+1)\}$ is a surreal number, and

(ii) if $x = \{s_{\mathbb{Z}}(i-1)\}, \{s_{\mathbb{Z}}(i+1)\}$, then $x \approx s_{\mathbb{Z}}(i)$.

PROOF: Set $S = s_{\mathbb{Z}}(i)$. $s_{\mathbb{Z}}(i-1) < S$. $L_S \ll \{x\} \ll R_S$ by [14, (21)], [13, (43)]. $S < s_{\mathbb{Z}}(i+1)$. \square

(11) $s_{\mathbb{Z}}(1) = \mathbf{1}_{\mathbf{No}}$.

(12) Let us consider an integer i . Then $-s_{\mathbb{Z}}(i) = s_{\mathbb{Z}}(-i)$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv -s_{\mathbb{Z}}(\$1) = s_{\mathbb{Z}}(-\$1)$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1]$ by [15, (22),(7),(21)]. $\mathcal{P}[n]$. Consider o being a natural number such that $i = o$ or $i = -o$. \square

(13) $s_{\mathbb{Z}}(n) + s_{\mathbb{Z}}(m) = s_{\mathbb{Z}}(n+m)$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv s_{\mathbb{Z}}(\$1) + \mathbf{1}_{\mathbf{No}} = s_{\mathbb{Z}}(\$1+1)$. $s_{\mathbb{Z}}(0) = \mathbf{0}_{\mathbf{No}}$ and $s_{\mathbb{Z}}(1) = \mathbf{1}_{\mathbf{No}}$. For every n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every n , $\mathcal{P}[n]$. Define $\mathcal{Q}[\text{natural number}] \equiv s_{\mathbb{Z}}(n) + s_{\mathbb{Z}}(\$1) = s_{\mathbb{Z}}(n+\$1)$. For every m such that $\mathcal{Q}[m]$ holds $\mathcal{Q}[m+1]$. For every m , $\mathcal{Q}[m]$. \square

Let us consider integers i, j . Now we state the propositions:

(14) $s_{\mathbb{Z}}(i) + s_{\mathbb{Z}}(j) \approx s_{\mathbb{Z}}(i+j)$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv$ for every n and m such that $n+m = \$1$ holds $s_{\mathbb{Z}}(n) + s_{\mathbb{Z}}(-m) \approx s_{\mathbb{Z}}(n-m)$. $\mathcal{P}[0]$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number k , $\mathcal{P}[k]$. Consider k being a natural number such that $i = k$ or $i = -k$. Consider n being a natural number such that $j = n$ or $j = -n$. \square

(15) $s_{\mathbb{Z}}(i) \cdot s_{\mathbb{Z}}(j) \approx s_{\mathbb{Z}}(i \cdot j)$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv$ for every n and m such that $n+m = \$1$ holds $s_{\mathbb{Z}}(n) \cdot s_{\mathbb{Z}}(m) \approx s_{\mathbb{Z}}(n \cdot m)$. For every natural number k such that for every n such that $n < k$ holds $\mathcal{P}[n]$ holds $\mathcal{P}[k]$. For every natural number k , $\mathcal{P}[k]$. Consider k being a natural number such that $i = k$ or $i = -k$. Consider n being a natural number such that $j = n$ or $j = -n$. \square

(16) If $x = \{y\}, \emptyset\}$ and $y < \mathbf{0}_{\mathbf{No}}$, then $x \approx \mathbf{0}_{\mathbf{No}}$.

(17) Suppose $x = \{y\}, \emptyset\}$ and born x is finite and $\mathbf{0}_{\mathbf{No}} \leq y$. Then there exists a natural number n such that

- (i) $x \approx s_{\mathbb{Z}}(n+1)$, and
- (ii) $s_{\mathbb{Z}}(n) \leq y < s_{\mathbb{Z}}(n+1)$, and
- (iii) $n \in \text{born } x$.

PROOF: Reconsider $a = \text{born } x$ as a natural number. Define $\mathcal{O}[\text{natural number}] \equiv L_x \ll \{s_{\mathbb{Z}}(\$1)\}$. $\mathcal{O}[a]$. Consider k being a natural number such that $\mathcal{O}[k]$ and for every natural number n such that $\mathcal{O}[n]$ holds $k \leq n$. $k \neq 0$. Reconsider $k_1 = k - 1$ as a natural number. For every z such that $L_x \ll \{z\} \ll R_x$ holds $\text{born } s_{\mathbb{Z}}(k) \subseteq \text{born } z$. $s_{\mathbb{Z}}(k_1) \leq y$. $k_1 \subseteq \text{born } y$. \square

2. DYADIC NUMBERS

Let r be a rational number. We say that r is dyadic-like if and only if

(Def. 2) there exists a natural number n such that $\text{den } r = 2^n$.

Now we state the proposition:

(18) Let us consider a rational number r . Then r is dyadic-like if and only if there exists an integer i and there exists a natural number n such that $r = \frac{i}{2^n}$.

PROOF: If r is dyadic-like, then there exists an integer i and there exists a natural number n such that $r = \frac{i}{2^n}$. Consider w being a natural number such that $i = (\text{num } r) \cdot w$ and $2^n = (\text{den } r) \cdot w$. Consider t being an element of \mathbb{N} such that $w = 2^t$ and $t \leq n$. \square

Let i be an integer and n be a natural number. Let us observe that $\frac{i}{2^n}$ is dyadic-like and every integer is dyadic-like. Let x be a dyadic-like rational number. Note that $-x$ is dyadic-like. Let y be a dyadic-like rational number. One can check that $x + y$ is dyadic-like and $x + y$ is dyadic-like and $x \cdot y$ is dyadic-like.

The functor \mathbb{D} yielding a set is defined by

(Def. 3) $o \in it$ iff o is a dyadic-like rational number.

Let us observe that \mathbb{D} is rational-membered and non empty and every element of \mathbb{D} is dyadic-like. A \mathbb{D} yadic is a dyadic-like rational number. From now on d, d_1, d_2 denote \mathbb{D} yadics. Let n be a natural number. The functor $\mathbb{D}(n)$ yielding a subset of \mathbb{D} is defined by

(Def. 4) $d \in it$ iff there exists an integer i such that $d = \frac{i}{2^n}$.

In the sequel i, j denote integers and n, m, p denote natural numbers.

Now we state the propositions:

(19) If $n \leq m$, then $\mathbb{D}(n) \subseteq \mathbb{D}(m)$.

(20) $d \in (\mathbb{D}(n+1)) \setminus (\mathbb{D}(n))$ if and only if there exists an integer i such that $d = \frac{2 \cdot i + 1}{2^{n+1}}$.

PROOF: If $d \in (\mathbb{D}(n+1)) \setminus (\mathbb{D}(n))$, then there exists an integer i such that $d = \frac{2 \cdot i + 1}{2^{n+1}}$. $d \notin \mathbb{D}(n)$. \square

(21) $\mathbb{Z} = \mathbb{D}(0)$.

(22) $\text{rng } s_{\mathbb{Z}} \subseteq \text{DayN}$. The theorem is a consequence of (1).

(23) (i) d is an integer, or

(ii) there exists p and there exists i such that $d = \frac{2 \cdot i + 1}{2^{p+1}}$.

PROOF: Consider i being an integer, n being a natural number such that $d = \frac{i}{2^n}$. Define $\mathcal{M}[\text{natural number}] \equiv d \in \mathbb{D}(\$1 + 1)$. $n \neq 0$. Consider m being a natural number such that $\mathcal{M}[m]$ and for every natural number n such that $\mathcal{M}[n]$ holds $m \leq n$. $d \notin \mathbb{D}(m)$. There exists an integer i such that $d = \frac{2 \cdot i + 1}{2^{m+1}}$. \square

3. MAPPINGS BETWEEN DYADIC NUMBERS AND SURREAL DYADIC NUMBERS

The functor $s_{\mathbb{D}}$ yielding a many sorted set indexed by \mathbb{D} is defined by

(Def. 5) $it(i) = s_{\mathbb{Z}}(i)$ and $it(\frac{2 \cdot j + 1}{2^{p+1}}) = \{\{it(\frac{j}{2^p})\}, \{it(\frac{j+1}{2^p})\}\}$.

Let us consider d . Note that $s_{\mathbb{D}}(d)$ is surreal. Now we state the propositions:

(24) $d_1 < d_2$ if and only if $s_{\mathbb{D}}(d_1) < s_{\mathbb{D}}(d_2)$. The theorem is a consequence of (18).

(25) (i) if $\mathbf{0}_{\mathbf{No}} \leq z$ and $z \in \text{Dayn}$ and $z \not\approx s_{\mathbb{D}}(n)$, then there exist natural numbers x, y, p such that $z \approx s_{\mathbb{D}}(x + \frac{y}{2^p})$ and $y < 2^p$ and $x + p < n$, and

(ii) for every natural numbers x, y, p such that $y < 2^p$ and $x + p < n$ holds $\mathbf{0}_{\mathbf{No}} \leq s_{\mathbb{D}}(x + \frac{y}{2^p}) \in \text{Dayn}$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv$ for every surreal number s such that $s \in \text{Day\$1}$ and $\mathbf{0}_{\mathbf{No}} \leq s$ holds $s \approx s_{\mathbb{D}}(\$1)$ or there exists a Dyadic d and there exist natural numbers x, y, p such that $s \approx s_{\mathbb{D}}(d)$ and $y < 2^p$ and $d = x + \frac{y}{2^p}$ and $x + p < \$1$ and for every natural numbers x, y, p such that $y < 2^p$ and $x + p < \$1$ holds $\mathbf{0}_{\mathbf{No}} \leq s_{\mathbb{D}}(x + \frac{y}{2^p}) \in \text{Day\$1}$. $\mathcal{P}[0]$. For every n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every n , $\mathcal{P}[n]$. If $\mathbf{0}_{\mathbf{No}} \leq z$ and $z \in \text{Dayn}$ and $z \not\approx s_{\mathbb{D}}(n)$, then there exist natural numbers x, y, p such that $z \approx s_{\mathbb{D}}(x + \frac{y}{2^p})$ and $y < 2^p$ and $x + p < n$. \square

(26) If $2 \cdot m + 1 < 2^p$, then $\text{born } s_{\mathbb{D}}(n + \frac{2 \cdot m + 1}{2^p}) = n + p + 1$.

PROOF: Set $d = n + \frac{2 \cdot m + 1}{2^p}$. $s_{\mathbb{D}}(d) \not\approx s_{\mathbb{D}}(n+p)$. $\mathbf{0}_{\mathbf{No}} \leq s_{\mathbb{D}}(d) \in \text{Day}(n+p+1)$.

For every O such that $s_{\mathbb{D}}(d) \in \text{Day}O$ holds $n + p + 1 \subseteq O$. \square

$$(27) \quad s_{\mathbb{D}}(-d) = -s_{\mathbb{D}}(d).$$

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv$ for every d such that $d \in \mathbb{D}(\$1)$ holds $s_{\mathbb{D}}(-d) = -s_{\mathbb{D}}(d)$. $\mathcal{P}[0]$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1]$. $\mathcal{P}[n]$. Consider i being an integer, n being a natural number such that $d = \frac{i}{2^n}$. \square

$$(28) \quad \text{If } 0 \leq d \text{ and } d \text{ is not an integer, then there exist natural numbers } n, m, p \text{ such that } d = n + \frac{2 \cdot m + 1}{2^{p+1}} \text{ and } 2 \cdot m + 1 < 2^{p+1}.$$

PROOF: Consider p, i such that $d = \frac{2 \cdot i + 1}{2^{p+1}}$. $i \geq 0$. \square

$$(29) \quad 0 \leq d \text{ if and only if } \mathbf{0}_{\mathbf{No}} \leq s_{\mathbb{D}}(d). \text{ The theorem is a consequence of (24).}$$

$$(30) \quad s_{\mathbb{D}}(d) \in \mathfrak{Born}_{\approx} s_{\mathbb{D}}(d). \text{ The theorem is a consequence of (28), (29), (26), (27), (24), and (25).}$$

$$(31) \quad \text{Suppose } \mathfrak{born} x \text{ is finite and } \overline{\mathbb{L}_x} \oplus \overline{\mathbb{R}_x} \subseteq 1. \text{ Then there exists an integer } i \text{ such that } x \approx s_{\mathbb{Z}}(i). \text{ The theorem is a consequence of (16), (17), and (12).}$$

Let us consider natural numbers $x_1, x_2, y_1, y_2, p_1, p_2$. Now we state the propositions:

$$(32) \quad \text{If } x_1 + \frac{y_1}{2^{p_1}} = x_2 + \frac{y_2}{2^{p_2}} \text{ and } y_1 < 2^{p_1} \text{ and } y_2 < 2^{p_2}, \text{ then } x_1 = x_2.$$

$$(33) \quad \text{If } x_1 + \frac{y_1}{2^{p_1}} < x_2 + \frac{y_2}{2^{p_2}} \text{ and } y_1 < 2^{p_1} \text{ and } y_2 < 2^{p_2}, \text{ then } x_1 < x_2.$$

$$(34) \quad \text{Let us consider natural numbers } x_1, x_2, p_1, p_2. \text{ If } \frac{2 \cdot x_1 + 1}{2^{p_1}} = \frac{x_2}{2^{p_2}}, \text{ then } p_1 \leq p_2.$$

$$(35) \quad \text{If } x \in \text{Dayn}, \text{ then there exists a Dyadic } d \text{ such that } x \approx s_{\mathbb{D}}(d) \text{ and } s_{\mathbb{D}}(d) \in \text{Dayn}. \text{ The theorem is a consequence of (30), (25), (28), (32), (34), (26), and (27).}$$

$$(36) \quad \text{There exists } n \text{ such that } s_{\mathbb{D}}(d) \in \text{Dayn}. \text{ The theorem is a consequence of (27).}$$

Let us consider d . One can verify that $s_{\mathbb{D}}(d)$ is unique surreal. Now we state the propositions:

$$(37) \quad x \text{ is a unique surreal number and } \mathfrak{born} x \text{ is finite if and only if there exists a Dyadic } d \text{ such that } x = s_{\mathbb{D}}(d). \text{ The theorem is a consequence of (35) and (36).}$$

$$(38) \quad \text{Let us consider an integer } i, \text{ a natural number } p, \text{ and a surreal number } x. \text{ Then}$$

(i) $\langle \{s_{\mathbb{D}}(\frac{i}{2^p})\}, \{s_{\mathbb{D}}(\frac{i+2}{2^p})\} \rangle$ is a surreal number, and

(ii) if $x = \langle \{s_{\mathbb{D}}(\frac{i}{2^p})\}, \{s_{\mathbb{D}}(\frac{i+2}{2^p})\} \rangle$, then $x \approx s_{\mathbb{D}}(\frac{i+1}{2^p})$.

The theorem is a consequence of (24), (10), and (27).

$$(39) \quad s_{\mathbb{D}}(d_1) + s_{\mathbb{D}}(d_2) \approx s_{\mathbb{D}}(d_1 + d_2).$$

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv$ for every natural numbers n_1, n_2 such that $n_1 + n_2 \leq \$1$ and $n_1 \leq n_2$ for every d_1 and d_2 such that $d_1 \in \mathbb{D}(n_1)$ and $d_2 \in \mathbb{D}(n_2)$ holds $s_{\mathbb{D}}(d_1) + s_{\mathbb{D}}(d_2) \approx s_{\mathbb{D}}(d_1 + d_2)$. $\mathcal{P}[0]$. If $\mathcal{P}[m]$, then

$\mathcal{P}[m+1]$. $\mathcal{P}[m]$. Consider i_1 being an integer, n_1 being a natural number such that $d_1 = \frac{i_1}{2^{n_1}}$. Consider i_2 being an integer, n_2 being a natural number such that $d_2 = \frac{i_2}{2^{n_2}}$. $d_2 \in \mathbb{D}(n_2) \subseteq \mathbb{D}(n_1 + n_2)$. \square

$$(40) \quad s_{\mathbb{D}}(d_1) \cdot s_{\mathbb{D}}(d_2) \approx s_{\mathbb{D}}(d_1 \cdot d_2).$$

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv$ for every natural numbers n_1, n_2 such that $n_1 + n_2 \leq \$$ and $n_1 \leq n_2$ for every d_1 and d_2 such that $d_1 \in \mathbb{D}(n_1)$ and $d_2 \in \mathbb{D}(n_2)$ holds $s_{\mathbb{D}}(d_1) \cdot s_{\mathbb{D}}(d_2) \approx s_{\mathbb{D}}(d_1 \cdot d_2)$. $\mathcal{P}[0]$. If $\mathcal{P}[m]$, then $\mathcal{P}[m+1]$. $\mathcal{P}[m]$. Consider i_1 being an integer, n_1 being a natural number such that $d_1 = \frac{i_1}{2^{n_1}}$. Consider i_2 being an integer, n_2 being a natural number such that $d_2 = \frac{i_2}{2^{n_2}}$. $d_2 \in \mathbb{D}(n_2) \subseteq \mathbb{D}(n_1 + n_2)$. \square

4. MAPPINGS BETWEEN REAL NUMBERS AND SURREAL REAL NUMBERS

In the sequel r, r_1, r_2 denote real numbers.

The functor $s'_{\mathbb{R}}$ yielding a many sorted set indexed by \mathbb{R} is defined by

$$(Def. 6) \quad it(r) = \langle \text{the set of all } s_{\mathbb{D}}\left(\frac{\lfloor r \cdot 2^n - 1 \rfloor}{2^n}\right), \text{ the set of all } s_{\mathbb{D}}\left(\frac{\lfloor r \cdot 2^m + 1 \rfloor}{2^m}\right) \rangle.$$

Now we state the proposition:

$$(41) \quad \frac{\lfloor r \cdot 2^n - 1 \rfloor}{2^n} < r < \frac{\lfloor r \cdot 2^m + 1 \rfloor}{2^m}.$$

Let us consider r . Note that $s'_{\mathbb{R}}(r)$ is surreal.

The functor $s_{\mathbb{R}}$ yielding a many sorted set indexed by \mathbb{R} is defined by

$$(Def. 7) \quad it(r) = \text{Unique}_{\mathbf{No}}(s'_{\mathbb{R}}(r)).$$

Let us consider r . Note that $s_{\mathbb{R}}(r)$ is surreal and $s_{\mathbb{R}}(r)$ is unique surreal. Now we state the propositions:

$$(42) \quad x \in L_{s'_{\mathbb{R}}(r)} \text{ if and only if there exists } n \text{ such that } x = s_{\mathbb{D}}\left(\frac{\lfloor r \cdot 2^n - 1 \rfloor}{2^n}\right).$$

$$(43) \quad x \in R_{s'_{\mathbb{R}}(r)} \text{ if and only if there exists } n \text{ such that } x = s_{\mathbb{D}}\left(\frac{\lfloor r \cdot 2^n + 1 \rfloor}{2^n}\right).$$

$$(44) \quad s_{\mathbb{D}}\left(\frac{\lfloor r \cdot 2^n - 1 \rfloor}{2^n}\right) < s'_{\mathbb{R}}(r) < s_{\mathbb{D}}\left(\frac{\lfloor r \cdot 2^n + 1 \rfloor}{2^n}\right). \text{ The theorem is a consequence of (42) and (43).}$$

$$(45) \quad \text{Let us consider integers } i_1, i_2, \text{ and natural numbers } n_1, n_2. \text{ Suppose } \frac{i_1}{2^{n_1}} < \frac{i_2}{2^{n_2}}. \text{ Then } \frac{i_1}{2^{n_1}} < \frac{i_1 \cdot 2^{n_2} \cdot 2 + 1}{2^{n_1 + n_2 + 1}} \leq \frac{i_2 \cdot 2^{n_1} \cdot 2 - 1}{2^{n_1 + n_2 + 1}} < \frac{i_2}{2^{n_2}}.$$

$$(46) \quad s'_{\mathbb{R}}(d) \approx s_{\mathbb{D}}(d) = s_{\mathbb{R}}(d).$$

PROOF: Set $R_3 = s'_{\mathbb{R}}(d)$. Set $D_2 = s_{\mathbb{D}}(d)$. Consider i being an integer, k being a natural number such that $d = \frac{i}{2^k}$. $L_{R_3} \ll \{D_2\} \ll R_{R_3}$. For every z such that $L_{R_3} \ll \{z\} \ll R_{R_3}$ holds $\text{born } D_2 \subseteq \text{born } z$. \square

$$(47) \quad s_{\mathbb{R}}(0) = \mathbf{0}_{\mathbf{No}}. \text{ The theorem is a consequence of (46).}$$

$$(48) \quad s_{\mathbb{R}}(1) = \mathbf{1}_{\mathbf{No}}. \text{ The theorem is a consequence of (46) and (11).}$$

$$(49) \quad \text{born } s'_{\mathbb{R}}(r) \subseteq \omega.$$

(50) $s'_{\mathbb{R}}(r_1) < s'_{\mathbb{R}}(r_2)$ if and only if $r_1 < r_2$.

PROOF: Set $R_1 = s'_{\mathbb{R}}(r_1)$. Set $R_2 = s'_{\mathbb{R}}(r_2)$. If $R_1 < R_2$, then $r_1 < r_2$. Consider k being a natural number such that $\frac{1}{2^k} \leq r_2 - r_1$. Set $K_2 = 2^{k+1}$.

$$s_{\mathbb{D}}\left(\frac{\lfloor K_2 \cdot r_1 + 1 \rfloor}{K_2}\right) \leq s_{\mathbb{D}}\left(\frac{\lfloor r_2 \cdot K_2 - 1 \rfloor}{K_2}\right). R_1 < s_{\mathbb{D}}\left(\frac{\lfloor K_2 \cdot r_1 + 1 \rfloor}{K_2}\right). s_{\mathbb{D}}\left(\frac{\lfloor r_2 \cdot K_2 - 1 \rfloor}{K_2}\right) \leq R_2. \square$$

(51) $s_{\mathbb{R}}(r_1) < s_{\mathbb{R}}(r_2)$ if and only if $r_1 < r_2$.

PROOF: If $s_{\mathbb{R}}(r_1) < s_{\mathbb{R}}(r_2)$, then $r_1 < r_2$. $s_{\mathbb{R}}(r_1) < s'_{\mathbb{R}}(r_2)$. \square

Let r be a positive real number. One can check that $s_{\mathbb{R}}(r)$ is positive. Now we state the propositions:

(52) $\text{born } s_{\mathbb{R}}(r) = \omega$ if and only if r is not a \mathbb{D} yadic. The theorem is a consequence of (37), (46), (49), (35), and (51).

(53) If $r_1 < r_2$, then there exists n such that $\frac{\lfloor r_1 \cdot 2^n + 1 \rfloor}{2^n} < r_2$.

(54) If $r_1 < r_2$, then there exists n such that $r_1 < \frac{\lfloor r_2 \cdot 2^n - 1 \rfloor}{2^n}$.

(55) $s_{\mathbb{R}}(r_1) + s_{\mathbb{R}}(r_2) \approx s_{\mathbb{R}}(r_1 + r_2)$.

(56) $-s_{\mathbb{R}}(r) \approx s_{\mathbb{R}}(-r)$.

(57) $s_{\mathbb{R}}(r_1) \cdot s_{\mathbb{R}}(r_2) \approx s_{\mathbb{R}}(r_1 \cdot r_2)$.

(58) If $n > 0$, then $s_{\mathbb{Z}}(n)^{-1} \approx s_{\mathbb{R}}(\frac{1}{n})$. The theorem is a consequence of (9), (46), (57), and (48).

5. *REAL SURREAL NUMBERS

Let x be a surreal number. The functor $\text{real}_{\approx}(x)$ yielding a surreal number is defined by

(Def. 8) $L_{it} =$ the set of all $x - s_{\mathbb{Z}}(n)^{-1}$ where n is a positive natural number and $R_{it} =$ the set of all $x + s_{\mathbb{Z}}(n)^{-1}$ where n is a positive natural number.

We say that x is *real if and only if

(Def. 9) $x \approx \text{real}_{\approx}(x)$ and there exists a natural number n such that $s_{\mathbb{Z}}(-n) < x < s_{\mathbb{Z}}(n)$.

Now we state the propositions:

(59) Let us consider a positive natural number n .

Then $x - s_{\mathbb{Z}}(n)^{-1} < \text{real}_{\approx}(x) < x + s_{\mathbb{Z}}(n)^{-1}$.

(60) If $x \approx y$, then $\text{real}_{\approx}(x) \approx \text{real}_{\approx}(y)$.

(61) If $x \approx y$ and x is *real, then y is *real.

Let r be a real number. One can check that $s'_{\mathbb{R}}(r)$ is *real and $s_{\mathbb{R}}(r)$ is *real and there exists a unique surreal number which is *real. Now we state the proposition:

(62) x is *real if and only if there exists r such that $x \approx s_{\mathbb{R}}(r)$.

PROOF: If x is *real, then there exists r such that $x \approx s_{\mathbb{R}}(r)$. \square

Let x be a *real surreal number. One can check that $-x$ is *real. Let y be a *real surreal number. Let us note that $x + y$ is *real and $x \cdot y$ is *real.

6. SURREAL ORDINALS

Let x be a surreal number. We say that x is **On** if and only if

(Def. 10) $R_x = \emptyset$.

Let us observe that $\mathbf{0}_{\mathbf{No}}$ is **On**. Let us consider n . One can check that $s_{\mathbb{Z}}(n)$ is **On** and there exists a unique surreal number which is **On**. Let A be an ordinal number. The functor $\text{ordinal}_{\mathbf{On}}(A)$ yielding a set is defined by

(Def. 11) there exists a transfinite sequence S such that $it = S(A)$ and $\text{dom } S = \text{succ } A$ and for every O such that $\text{succ } O \in \text{succ } A$ holds $S(\text{succ } O) = \langle \{S(O)\}, \emptyset \rangle$ and for every O such that $O \in \text{succ } A$ and O is limit ordinal holds $S(O) = \langle \text{rng}(S|O), \emptyset \rangle$.

Now we state the propositions:

(63) Let us consider a transfinite sequence S . Suppose $\text{dom } S = \text{succ } A$ and for every O such that $\text{succ } O \in \text{succ } A$ holds $S(\text{succ } O) = \langle \{S(O)\}, \emptyset \rangle$ and for every O such that $O \in \text{succ } A$ and O is limit ordinal holds $S(O) = \langle \text{rng}(S|O), \emptyset \rangle$. If $O \in \text{succ } A$, then $S(O) = \text{ordinal}_{\mathbf{On}}(O)$.

PROOF: Consider S_1 being a transfinite sequence such that $\text{ordinal}_{\mathbf{On}}(O) = S_1(O)$ and $\text{dom } S_1 = \text{succ } O$ and for every B such that $\text{succ } B \in \text{succ } O$ holds $S_1(\text{succ } B) = \langle \{S_1(B)\}, \emptyset \rangle$ and for every B such that $B \in \text{succ } O$ and B is limit ordinal holds $S_1(B) = \langle \text{rng}(S_1|B), \emptyset \rangle$. Define $\mathcal{P}[\text{ordinal number}] \equiv$ if $\$_1 \subseteq O$, then $S_1(\$_1) = S(\$_1)$. For every ordinal number B such that for every ordinal number C such that $C \in B$ holds $\mathcal{P}[C]$ holds $\mathcal{P}[B]$. For every ordinal number B , $\mathcal{P}[B]$. \square

(64) $\text{ordinal}_{\mathbf{On}}(0) = \mathbf{0}_{\mathbf{No}}$.

(65) $\text{ordinal}_{\mathbf{On}}(\text{succ } A) = \langle \{\text{ordinal}_{\mathbf{On}}(A)\}, \emptyset \rangle$. The theorem is a consequence of (63).

(66) Suppose A is limit ordinal. Then there exists a set X such that

(i) $\text{ordinal}_{\mathbf{On}}(A) = \langle X, \emptyset \rangle$, and

(ii) for every o , $o \in X$ iff there exists B such that $B \in A$ and $o = \text{ordinal}_{\mathbf{On}}(B)$.

PROOF: Set $B = \text{succ } A$. Consider S being a transfinite sequence such that $\text{ordinal}_{\mathbf{On}}(A) = S(A)$ and $\text{dom } S = B$ and for every O such that $\text{succ } O \in B$ holds $S(\text{succ } O) = \langle \{S(O)\}, \emptyset \rangle$ and for every O such that $O \in B$ and O is limit ordinal holds $S(O) = \langle \text{rng}(S|O), \emptyset \rangle$. If $o \in X$, then

there exists B such that $B \in A$ and $o = \text{ordinal}_{\mathbf{On}}(B)$. $\text{ordinal}_{\mathbf{On}}(C) = S(C) = (S \upharpoonright A)(C)$. \square

(67) $\text{ordinal}_{\mathbf{On}}(A) \in \text{Day}A$.

PROOF: Define $\mathcal{P}[\text{ordinal number}] \equiv \text{ordinal}_{\mathbf{On}}(\$1) \in \text{Day}\$1$. For every ordinal number D such that for every ordinal number C such that $C \in D$ holds $\mathcal{P}[C]$ holds $\mathcal{P}[D]$. For every ordinal number D , $\mathcal{P}[D]$. \square

Let us consider A . One can check that $\text{ordinal}_{\mathbf{On}}(A)$ is surreal and $\text{ordinal}_{\mathbf{On}}(A)$ is **On**. Now we state the propositions:

(68) $\text{ordinal}_{\mathbf{On}}(A) < \text{ordinal}_{\mathbf{On}}(B)$ if and only if $A \in B$.

PROOF: If $\text{ordinal}_{\mathbf{On}}(A) < \text{ordinal}_{\mathbf{On}}(B)$, then $A \in B$. \square

(69) If $x \in \text{Day}A$, then $x \leq \text{ordinal}_{\mathbf{On}}(A)$.

PROOF: Define $\mathcal{P}[\text{ordinal number}] \equiv$ for every x such that $x \in \text{Day}\$1$ holds $x \leq \text{ordinal}_{\mathbf{On}}(\$1)$. For every ordinal number D such that for every ordinal number C such that $C \in D$ holds $\mathcal{P}[C]$ holds $\mathcal{P}[D]$. For every ordinal number D , $\mathcal{P}[D]$. \square

(70) $\text{born } \text{ordinal}_{\mathbf{On}}(A) = A$.

PROOF: $\text{ordinal}_{\mathbf{On}}(A) \in \text{Day}A$. For every O such that $\text{ordinal}_{\mathbf{On}}(A) \in \text{Day}O$ holds $A \subseteq O$. \square

(71) If $x \in \text{Lordinal}_{\mathbf{On}}(A)$, then there exists B such that $B \in A$ and $x = \text{ordinal}_{\mathbf{On}}(B)$. The theorem is a consequence of (66) and (65).

(72) $\text{sz}(n) = \text{ordinal}_{\mathbf{On}}(n)$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{sz}(\$1) = \text{ordinal}_{\mathbf{On}}(\$1)$. $\mathcal{P}[0]$. If $\mathcal{P}[m]$, then $\mathcal{P}[m + 1]$. $\mathcal{P}[m]$. \square

Let O be a **On** surreal number. One can verify that $\text{Unique}_{\mathbf{No}}(O)$ is **On**.

Let A be an ordinal number. The functor $\text{Ordinal}_{\mathbf{On}}(A)$ yielding a **On** unique surreal number is defined by the term

(Def. 12) $\text{Unique}_{\mathbf{No}}(\text{ordinal}_{\mathbf{On}}(A))$.

Now we state the propositions:

(73) (i) $\text{Ordinal}_{\mathbf{On}}(A) \approx \text{ordinal}_{\mathbf{On}}(A)$, and

(ii) $\text{born } \text{Ordinal}_{\mathbf{On}}(A) = A$.

PROOF: $\text{born}_{\approx} \text{Ordinal}_{\mathbf{On}}(A) = \text{born}_{\approx} \text{ordinal}_{\mathbf{On}}(A) \subseteq \text{born } \text{ordinal}_{\mathbf{On}}(A) = A$. $A \subseteq \text{born } \text{Ordinal}_{\mathbf{On}}(A)$. \square

(74) $\text{Ordinal}_{\mathbf{On}}(A) \in \text{Day}A$. The theorem is a consequence of (73).

(75) $\text{Ordinal}_{\mathbf{On}}(A) < \text{Ordinal}_{\mathbf{On}}(B)$ if and only if $A \in B$.

PROOF: $\text{Ordinal}_{\mathbf{On}}(A) \approx \text{ordinal}_{\mathbf{On}}(A)$ and $\text{Ordinal}_{\mathbf{On}}(B) \approx \text{ordinal}_{\mathbf{On}}(B)$.

If $\text{Ordinal}_{\mathbf{On}}(A) < \text{Ordinal}_{\mathbf{On}}(B)$, then $A \in B$.

$\text{Ordinal}_{\mathbf{On}}(A) < \text{ordinal}_{\mathbf{On}}(B)$. \square

- (76) If $x \in \text{Day}A$, then $x \leq \text{Ordinal}_{\mathbf{On}}(A)$. The theorem is a consequence of (69) and (73).
- (77) If x is **On**, then there exists A such that $x \approx \text{Ordinal}_{\mathbf{On}}(A)$. The theorem is a consequence of (73).
- (78) $s_{\mathbb{Z}}(n) = \text{Ordinal}_{\mathbf{On}}(n)$. The theorem is a consequence of (72) and (73).
- (79) $\text{Ordinal}_{\mathbf{On}}(\text{succ } A) = \langle \{\text{Ordinal}_{\mathbf{On}}(A)\}, \emptyset \rangle$.

PROOF: Set $O_1 = \text{Ordinal}_{\mathbf{On}}(A)$. Set $x = \langle \{O_1\}, \emptyset \rangle$. $\text{born } O_1 = A$. If $o \in \{O_1\} \cup \emptyset$, then there exists O such that $O \in \text{succ } A$ and $o \in \text{Day } O$. $\text{ordinal}_{\mathbf{On}}(\text{succ } A) = \langle \{\text{ordinal}_{\mathbf{On}}(A)\}, \emptyset \rangle$. $O_1 \approx \text{ordinal}_{\mathbf{On}}(A)$. For every surreal number y such that $y \approx x$ holds $\text{succ } A \subseteq \text{born } y$. For every z such that $z \in \mathfrak{Born}_{\approx} x$ and $L_z \cup R_z$ is unique surreal-membered and $x \neq z$ holds $\overline{L_x} \oplus \overline{R_x} \in \overline{L_z} \oplus \overline{R_z}$. $\text{ordinal}_{\mathbf{On}}(\text{succ } A) \approx \text{Ordinal}_{\mathbf{On}}(\text{succ } A)$. \square

- (80) There exists a **On** surreal number x such that

- (i) $\text{born } x = A$, and
- (ii) $\text{Ordinal}_{\mathbf{On}}(A) \approx x$, and
- (iii) for every o , $o \in L_x$ iff there exists B such that $B \in A$ and $o = \text{Ordinal}_{\mathbf{On}}(B)$.

PROOF: Define $\mathcal{P}[\text{object}] \equiv$ there exists B such that $B \in A$ and $\$1 = \text{Ordinal}_{\mathbf{On}}(B)$. Consider X being a set such that $o \in X$ iff $o \in \text{Day } A$ and $\mathcal{P}[o]$. If $o \in X \cup \emptyset$, then there exists O such that $O \in A$ and $o \in \text{Day } O$. Reconsider $x = \langle X, \emptyset \rangle$ as a surreal number. For every O such that $x \in \text{Day } O$ holds $A \subseteq O$. $\text{Ordinal}_{\mathbf{On}}(A) \ll \{x\}$. $L_x \ll \{\text{ordinal}_{\mathbf{On}}(A)\}$. $\text{Ordinal}_{\mathbf{On}}(A) \approx \text{ordinal}_{\mathbf{On}}(A) \approx x$. $o \in \text{Day } B \subseteq \text{Day } A$. \square

Let α, β be **On** surreal numbers. Observe that $\alpha + \beta$ is **On** and $\alpha \cdot \beta$ is **On**.

REFERENCES

- [1] Vincent Bagayoko and Joris van der Hoeven. Surreal substructures. *Fundamenta Mathematicae*, 266(1):25–96, 2024. doi:10.4064/fm231020-23-2.
- [2] Wolfgang Bertram. On Conway’s numbers and games, the von Neumann universe, and pure set theory. *ArXiv preprint arXiv:2501.04412*, 2025.
- [3] John Horton Conway. *On Numbers and Games*. A K Peters Ltd., Natick, MA, second edition, 2001. ISBN 1-56881-127-6.
- [4] Ovidiu Costin and Philip Ehrlich. Integration on the surreals. *Advances in Mathematics*, 452:109823, 2024. doi:10.1016/j.aim.2024.109823.
- [5] Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions in type theory. *The Journal of Symbolic Logic*, 65(2):525–549, 2000. doi:10.2307/2586554.
- [6] Philip Ehrlich. The absolute arithmetic continuum and the unification of all numbers great and small. *The Bulletin of Symbolic Logic*, 18(1):1–45, 2012. doi:10.2178/bsl/1327328438.
- [7] Philip Ehrlich. Number systems with simplicity hierarchies: A generalization of Conway’s theory of surreal numbers. *Journal of Symbolic Logic*, 66(3):1231–1258, 2001. doi:10.2307/2695104.
- [8] Harry Gonshor. *An Introduction to the Theory of Surreal Numbers*. London Mathematical Society Lecture Note Series, 110. Cambridge University Press, 1986. ISBN 0521312051.

- [9] Donald E. Knuth. *Surreal Numbers: How Two Ex-students Turned on to Pure Mathematics and Found Total Happiness*. Addison-Wesley, 1974.
- [10] Lionel Elie Mamane. Surreal numbers in Coq. In Jean-Christophe Filliâtre, Christine Paulin-Mohring, and Benjamin Werner, editors, *Types for Proofs and Programs, TYPES 2004*, volume 3839 of *LNCS*, pages 170–185. Springer, 2004. doi:10.1007/11617990_11.
- [11] J. A. Nieto, J. A. Escalante-Javalera, C. A. Somera-Patrón, and E. J. Villasenor-González. Parity of dyadic rationals and surreal numbers. *Far East Journal of Mathematical Sciences (FJMS)*, (2):155–167, May 2024. doi:10.17654/0972087124010.
- [12] Steven Obua. Partizan games in Isabelle/HOLZF. In Kamel Barkaoui, Ana Cavalcanti, and Antonio Cerone, editors, *Theoretical Aspects of Computing – ICTAC 2006*, volume 4281 of *LNCS*, pages 272–286. Springer, 2006.
- [13] Karol Pak. Conway numbers – formal introduction. *Formalized Mathematics*, 31(1):193–203, 2023. doi:10.2478/forma-2023-0018.
- [14] Karol Pak. Integration of game theoretic and tree theoretic approaches to Conway numbers. *Formalized Mathematics*, 31(1):205–213, 2023. doi:10.2478/forma-2023-0019.
- [15] Karol Pak. The ring of Conway numbers in Mizar. *Formalized Mathematics*, 31(1):215–228, 2023. doi:10.2478/forma-2023-0020.
- [16] Karol Pak and Cezary Kaliszyk. Conway normal form: Bridging approaches for comprehensive formalization of surreal numbers. In Yves Bertot, Temur Kutsia, and Michael Norrish, editors, *15th International Conference on Interactive Theorem Proving, ITP 2024, September 9–14, 2024, Tbilisi, Georgia*, volume 309 of *LIPICS*, pages 29:1–29:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.ITP.2024.29.
- [17] Matthew Roughan. Practically surreal: surreal arithmetic in Julia. *SoftwareX*, 9:293–298, 2019. doi:10.1016/j.softx.2019.03.005.
- [18] Alex Ryba, Philip Ehrlich, Richard Kenyon, Jeffrey Lagarias, James Propp, and Louis Kauffman. Conway’s mathematics after Conway. *Notices of the American Mathematical Society*, 69:1145–1155, 2022. doi:10.1090/noti2513.
- [19] Dominik Tomaszuk, Łukasz Szeremeta, and Artur Korniłowicz. MMLKG: Knowledge graph for mathematical definitions, statements and proofs. *Scientific Data*, 10(1), 2023. doi:10.1038/s41597-023-02681-3.
- [20] Claus Tøndering. Surreal numbers – an introduction. *HTTP, version 1.7*, December 2019.
- [21] The Univalent Foundations Program. *Homotopy Type Theory: Univalent Foundations of Mathematics*. <https://homotopytypetheory.org/book>, Institute for Advanced Study, 2013.
- [22] Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle framework. In Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar, editors, *Theorem Proving in Higher Order Logics*, pages 33–38. Springer Berlin Heidelberg, 2008.

Received April 10, 2025, Accepted September 4, 2025
