REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/19591
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorPąk, Karol-
dc.date.accessioned2026-01-09T10:39:37Z-
dc.date.available2026-01-09T10:39:37Z-
dc.date.issued2025-
dc.identifier.citationFormalized Mathematics, Volume 33, Issue 1, Pages 1-10pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/19591-
dc.description.abstractThis paper sets out to formalize the concept of the square root as proposed by Clive Bach in the section entitled Properties of Division in Conway’s book. The proposed construction extends the classical approach to the square root of real numbers to include both infinitely large and infinitely small numbers.pl
dc.language.isoenpl
dc.publisherUniversity of Białystokpl
dc.rightsAttribution-ShareAlike 4.0 International (CC BY-SA 4.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/pl
dc.subjectsurreal numberpl
dc.subjectConway’s gamepl
dc.subjectsquare rootpl
dc.titleSurreal Numbers: A Study of Square Rootspl
dc.typeArticlepl
dc.rights.holder© 2025 The Author(s)pl
dc.rights.holderCC BY-SA 4.0 licensepl
dc.identifier.doi10.2478/forma-2025-0001-
dc.description.AffiliationFaculty of Computer Science, University of Białystok, Polandpl
dc.description.referencesNorman L. Alling. Foundations of Analysis over Surreal Number Fields. Number 141 in Mathematics Studies. North-Holland, 1987. ISBN 9780444702265.pl
dc.description.referencesVincent Bagayoko and Joris van der Hoeven. Surreal substructures. Fundamenta Mathematicae, 266(1):25–96, 2024. doi:10.4064/fm231020-23-2.pl
dc.description.referencesGrzegorz Bancerek. Towards the construction of a model of Mizar concepts. Formalized Mathematics, 16(2):207–230, 2008. doi:10.2478/v10037-008-0027-x.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesWolfgang Bertram. On Conway’s numbers and games, the von Neumann universe, and pure set theory. ArXiv preprint arXiv:2501.04412, 2025.pl
dc.description.referencesJohn Horton Conway. On Numbers and Games. A K Peters Ltd., Natick, MA, second edition, 2001. ISBN 1-56881-127-6.pl
dc.description.referencesOvidiu Costin and Philip Ehrlich. Integration on the surreals. Advances in Mathematics, 452:109823, 2024. doi:10.1016/j.aim.2024.109823.pl
dc.description.referencesPeter Dybjer. A general formulation of simultaneous inductive-recursive definitions in type theory. The Journal of Symbolic Logic, 65(2):525–549, 2000. doi:10.2307/2586554.pl
dc.description.referencesHarry Gonshor. An Introduction to the Theory of Surreal Numbers. London Mathematical Society Lecture Note Series, 110. Cambridge University Press, 1986. ISBN 0521312051.pl
dc.description.referencesDonald E. Knuth. Surreal Numbers: How Two Ex-students Turned on to Pure Mathematics and Found Total Happiness. Addison-Wesley, 1974.pl
dc.description.referencesLionel Elie Mamane. Surreal numbers in Coq. In Jean-Christophe Filliatre, Christine Paulin-Mohring, and Benjamin Werner, editors, Types for Proofs and Programs, TYPES 2004, volume 3839 of LNCS, pages 170–185. Springer, 2004. doi:10.1007/11617990 11.pl
dc.description.referencesSteven Obua. Partizan games in Isabelle/HOLZF. In Kamel Barkaoui, Ana Cavalcanti, and Antonio Cerone, editors, Theoretical Aspects of Computing – ICTAC 2006, volume 4281 of LNCS, pages 272–286. Springer, 2006.pl
dc.description.referencesKarol Pąk. Conway numbers – formal introduction. Formalized Mathematics, 31(1): 193–203, 2023. doi:10.2478/forma-2023-0018.pl
dc.description.referencesKarol Pąk. Inverse element for surreal number. Formalized Mathematics, 32(1):65–75, 2024. doi:10.2478/forma-2024-0005.pl
dc.description.referencesKarol Pąk. Integration of game theoretic and tree theoretic approaches to Conway bers. Formalized Mathematics, 31(1):205–213, 2023. doi:10.2478/forma-2023-0019.pl
dc.description.referencesKarol Pąk. The ring of Conway numbers in Mizar. Formalized Mathematics, 31(1): 215–228, 2023. doi:10.2478/forma-2023-0020.pl
dc.description.referencesAlex Ryba, Philip Ehrlich, Richard Kenyon, Jeffrey Lagarias, James Propp, and Louis Kauffman. Conway’s mathematics after Conway. Notices of the American Mathematical Society, 69:1145–1155, 2022. doi:10.1090/noti2513.pl
dc.description.referencesDierk Schleicher and Michael Stoll. An introduction to Conway’s games and numbers. Moscow Mathematical Journal, 6:359–388, 2006. doi:10.17323/1609-4514-2006-6-2-359-388.pl
dc.description.referencesDominik Tomaszuk, Łukasz Szeremeta, and Artur Korniłowicz. MMLKG: Knowledge graph for mathematical definitions, statements and proofs. Scientific Data, 10(1), 2023. doi:10.1038/s41597-023-02681-3.pl
dc.description.referencesThe Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.pl
dc.description.referencesMakarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle framework. In Otmane Ait Mohamed, C´esar Mu˜noz, and Sofi`ene Tahar, editors, Theorem Proving in Higher Order Logics, pages 33–38. Springer Berlin Heidelberg, 2008.pl
dc.identifier.eissn1898-9934-
dc.description.volume33pl
dc.description.issue1pl
dc.description.firstpage1pl
dc.description.lastpage10pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0002-7099-1669-
Występuje w kolekcji(ach):Formalized Mathematics, 2025, Volume 33, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
Surreal_Numbers_A_Study_of_Square_Roots.pdf327,88 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons