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Summary. This paper sets out to formalize the concept of the square
root as proposed by Clive Bach in the section entitled Properties of Division in
Conway’s book. The proposed construction extends the classical approach to the
square root of real numbers to include both infinitely large and infinitely small
numbers.
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INTRODUCTION

In the chapter The class No is a field [6], Conway also quotes the definition
of a square root of a surreal number [10] proposed by Clive Bach. This definition
is formulated in Conway’s typical way, using double recursion and the concept
and typical options as follows:

L R L Le R Re
gyt eyt oyt a gty
Vo =y={Val, yL 1+ 4R | Vi, gL fyle 7yl 4yl } (I.1)

where 2%, 2 represent non-negative options of x, while y~, y~*, y%, yf** denote

the options for y such that no denominator is zero. In addition, the construction
of this number is entirely absent, and the veracity of this definition is left to the
reader to demonstrate through an easy inductive proof.

In our formalization, we adapt the idea presented for the inverse element
proposed by Schleicher and Stoll [I8], which was previously employed in our
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earlier formalization [14] in the Mizar system [4]. We first introduce a restriction
that limits the members of the sets L,, R, to those that are non-negative. Let
x be a surreal number. We define the function NNPart(z) (see Def. 1) to be

{0,{zl e L, |2z* >0} | {zfP € R, | 2B > 0}} (1.2)

and we prove that NNPart is born no later than = (see Th3) and ~ z (see Thb)
for any non-negative x.

Then two sequences of sets of surreal numbers are introduced: {{/7, 2o, Z } nen,
{{/n, w0, T}nen for a given surreal number x and an initial pair of of surreal num-
ber sets xg. These sequences are defined (see Def. 3, Def. 4, Def. 5) recursively
as follows:

{/0, 20, = Ly,

V0,20, = Ry,,
Yn+1,x0,2 = {n,xo,zUS(z, ¥n,zo,x, {Yn,xo, ) (1.3)
Yn+1,20,2 = {Yn, xo, 7 US(x, ¥n, 0,2, /n, 20, 7)

U S(‘T? 1\77% Zo, T, {Vna Zo, :E)a

where S(z, A, B) = {“;rfl;b lae XANbeY ANa+b# 0} and A and B represent
arbitrary sets of surreal numbers (see Def. 2).

The condition can now be expressed in a more formal, but still recursive
way, as follows:

Ve =( ymzoz | Vo) (L4)
neN neN

where zg = ({\/zr | 21 € LNNPart(ac)}7 {VZr | TR € Ruwpart(x)})-

To implement this kind of recursion in the Mizar system we use a sequence
¢/, where {/- is a function defined on day « for each ordinal «, with the
following definition:

% = < U n, ( U €/>) [LNNPart(x)]vx U RIT, ( U €/>) [RNNPart(z)Lx) (15)

neN f<a neN f<a

where x represents an element of day «a. It is important for understanding the
correctness of the definition that the constructed sequence is a C-monotone in
the set-theoretic sense, so that we can treat (Js., ¢/~ as a function. We may
now define v/(x) as {/(x), where a represents the day on which a given positive
x is born (see Def. 7) and satisfies the fundamental properties of square root
for non-negative real numbers such as: 0 < \/z < ,/y for all surreal numbers
0 <z <y (see Th27), /z ' ~ Vz~ for positive surreal (see Th30).

The concept proposed by Clive Bach was initially introduced for non-negative
numbers; however, there are no inherent limitations to its application beyond
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the natural domain. We have shown that, outside the domain, the fundamental
property & &~ y = \/x =~ /y is lost. Indeed, we prove that v—1 = —1 (altho-
ugh obviously, this is not connected in a straightforward way with surcomplex
numbers [I]) and for any positive x we can construct a surreal number y ~ —1
such that ,/y < —z (see Th31).

For a detailed exposition of the formalized topic, see [2] (for developments
in another systems — see [I1] and [12], [2I]). The development of the square root
provides a foundation for further advances, notably the integration of surreal
numbers [7] (cf. the discussion in [I7]). Our formalization is oriented more to-
wards set theory [0], building on the Mizar framework (with recently improved
possibility of finding interconnections [19]), rather than the inductive-inductive
[8] HoTT approach, which however seems to be more natural (Sect. 11.6 of [20]).
This may be viewed as the first step in a longstanding program, initiated by
Conway, Kruskal, and Norton [9], aiming to develop analysis on No, beginning
with a genetic definition of integration [7].

1. SURREAL NUMBERS WITHOUT NEGATIVE OPTIONS

From now on n, m denote natural numbers, o denotes an object, p denotes
a pair object, and z, y, z denote surreal numbers.
Let « be an object. The functor Part>o, (z) yielding a pair set is defined
by
(Def. 1) (o € Ly iff there exists a surreal number [ such that o = and [ € Ly
and Ono < 1) and (o0 € Ry iff there exists a surreal number r such that
o=rand r € R, and Ono < 7).
One can check that Lpart= oy, (2) is surreal-membered as a set and Rpart oy, (x)
is surreal-membered as a set. Now we state the proposition:

(1) (1) LPartZONo(o) C Lo, and

(i) Rpartsoy, (o) € Ro-
Let x be a surreal number. One can check that Part>oy, (z) is surreal. Now
we state the propositions:

(2) (i) ze Lpartsoy, (o) if @ € Lo and ONo < z, and

(i) z € RPartsoy, (0) iff x € Ry, and Ono < .
(3) bornPart>oy,(z) C bornz.
PROOF: Set N = Part>oy,(x). For every object o such that o € Ly URNn
there exists an ordinal number O such that O € bornz and o € DayO. I
(4) If Ono < z, then Ono < Part>qy, ().
PROOF: Set N = Part>o,,(z). {Ono} < Ry. O
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(5) If Ono < z, then Part>oy, (2) ~ .
PROOF: Set N = Part>oy, (7). ONo < N. Ly < {z}. {N} < Ry by [15
(11), (4)], [13} (43)]. Ls < {N}. {z} < Rn. O

2. SQUARE RooT CONSTRUCTION

Let [ be an object and X, Y be sets. The functor /I1, X, Y yielding a surreal-
membered set is defined by
(Def. 2) o € it iff there exists x and there exists y such that v € X and y € Y
and 7 +y % Ono and 0 = (I1 +' z-y) - ((x +y)7L).
Let 2 be a pair object and x be an object. The functor Transitions(z, x)
yielding a function is defined by
(Def. 3) dom it = N and it(0) = x¢ and for every n, it(n) is pair and (it(n + 1)) =
Lit(n) Yy/Z: Lit(n), Rit(n) and (it(n +1))2 = (Rit(n) Y/Z: Lit(n)» Lit(n)) Y
T, Rit(n), Rit(n)-
The functor {/7g,z yielding a function is defined by
(Def. 4) dom it = N and for every natural number k, it(k) =
((Transitions(zg, z))(k))1.
The functor {/zg,r yielding a function is defined by
(Def. 5) dom it = N and for every natural number k, it(k) =
((Transitions(zg, z))(k))2.
Now we state the propositions:
(6) (i) (&/p,0)(0) =Ly, and
(i) (§/P,0)(0) = Rp-
(7) If n < m, then ({p,0)(n) € ({/p,0)(m) and ({/p,0)(n) C ({p,0)(m).
PROOF: Define P[natural number] = (¥p,0)(n) C (¥p,0)(n + $1) and

(&/p,0)(n) C (&/p,0)(n + $1). For every natural number k such that P[k]
holds P[k + 1]. For every natural number k, P[kz] O

® @) Ypo)n+1)= (n) U \Jo, (4/p-0) (). (§/p-0)(n), and
(i) (ypro)(n+1) = W ), (4/p,0)(n))U
Vo (gp.o)(n), wmm).

(9) Suppose L, is surreal-membered and Ry, is surreal-membered. Then

(i) (¥/p,0)(n) is surreal-membered, and
(ii) (&/p,0)(n) is surreal-membered.
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PROOF: Define P[natural number| = (&/p,0)($1) is surreal-membered and
(£/p,0)(8$1) is surreal-membered. P[0]. For every n such that P[n] holds
Pln + 1]. For every n, P[n]. O

(10) Suppose L, is surreal-membered and Ry, is surreal-membered. Then
(i) U &/p, o is surreal-membered, and
(ii) U &/p, o is surreal-membered.

PRrROOF: J &/p, 0 is surreal-membered. Consider n being an object such

that n € dom({/p,0) and a € ({Ip,0)(n). (&p,0)(n) is surreal-membered.
O

(11) Let us consider sets X3, Xo, Y3, Y. Suppose X; C X5 and Y] C Y.
Then /o, X1,Y1 C Vo, X2,Y5.

(12) U\L/pa :LPU\/O7U\L/p7O7U\R/p7O'
PROOF: Define P[natural number] = (¢/p,0)($1) C L, U

Vo Ugp:0.U §p:0. (4/5:0)(0) = L. 1t Pln), then Pln+1]. Plnl. U ¢/p0 €
LyUyJo,U ¢/p,0,U ¢/p,0. 1 /o,U ¢/p.0.U /p.0 € U ¢/p,0. Ly = (¢/P,0)(0).
U

(13) U gp,0= (RyUy/o,Uy/p,0,UYp,0) U, /o,U ¢p0.U §/p.o.
PROOF: Define P[natural number] = (§/p,0)($1) C

(RyUy/0,U ¢/p.0,U ¢/P.0)Uy /0, U /.0, U /P 0. ({/7,0)(0) = Ry. I P[],
then Pln + 1. Pln]. U ¢/p,0 € (RpUy/o.U ¥/P.0,U ¢/p,0)U

Vo Ugpo.Uypo. \/o.UypoUypocUypo /oUypoUypo
C Up,0. Rp = ({/p,0)(0). O

3. THE SQUARE ROOT OF A SURREAL NUMBER

Let A be an ordinal number. The functor sqrtno(A) yielding a many sorted

set indexed by DayA is defined by
(Def. 6) there exists a C-monotone, function yielding transfinite sequence S such
that dom S = succ A and it = S(A) and for every ordinal number B such
that B € succ A there exists a many sorted set S4 indexed by DayB such
that S(B) = S4 and for every object = such that € DayB holds Sy(z) =

(U ]\J/((U rng(srB))O(LPart>ONO(x))7 (U rng(S rB))O(RPart>0No(m)))a z,
U IC/((U rng(S rB))O(LPartQONO (a:))» (U rng(S rB))O(RPart>ONO (w)))’ J?)

Now we state the proposition:
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(14) Let us consider a C-monotone, function yielding transfinite sequence S.
Suppose for every ordinal number B such that B € dom.S there exists
a many sorted set Sy indexed by Day B such that S(B) = S; and for every
o such that o € DayB holds S4(0) =

(U i/((U rng(S[ )) (LPart>0N ) (U rng( B))O(RPart>0No (0)))7 0,

U/ (Urna(STB)) (Lrur ooy, () (UTE(S1B))* (Rpares, () 0)- Let us
consider an ordinal number A. If A € dom S, then sqrtno(A) = S(A).
PROOF: Define D(ordinal number) = Day$;. Define H(object, C-monotone,
function yielding transfinite sequence) =

(U \/( Urng$2) (LPart>0N ($1) ) (Urng$2) (RPart>0N ($1) )) $1a

?/((U g $2)° (Lpartsoy,(81)): (Ung$2)°(Rpart=oy,_ (1)), 1)

Consider Sy being a C-monotone, function yielding transfinite sequence
such that dom Sy = succ A and S2(A) = sqrtno(A) and for every ordinal
number B such that B € succ A there exists a many sorted set S4 indexed
by D(B) such that So(B) = Sy and for every object = such that x € D(B)
holds Si(z) = H(z, S2[B). S1succ A = Sa|succ A. O

Let o be an object. Assume o is a surreal number. The functor /o yielding

a set is defined by
(Def. 7) for every z such that = o holds it = (sqrtno(bornz))(z).
Let z be a surreal number. Observe that the functor \/x yields a set and is
defined by the term
(Def. 8) (sqrtwo(bornx))(x).
Let x be an object. The functor sqrtoy, (z) yielding a pair set is defined by
(Def. 9) (o € Lj iff there exists a surreal number [ such that o = v/ and [ €
Lpartsoy, (@)) and (o € Ry iff there exists a surreal number r such that
o=+/randr € Rpart>0No(x)).
Now we state the propositions:
(15) V& = (U {/sarton, (2), 2, U {/sartoy, (v), ).
PROOF: Set A = bornx Set N7 = Part;ONo( ). Consider S being a C-
monotone, function yielding transfinite sequence such that dom S = succ A
and sqrtno(A) = S(A) and for every ordinal number B such that B €

succ A there exists a many sorted set Sy indexed by DayB such that
S(B) = S4 and for every object o such that o € DayB holds Si(0) =

(U i/((U rng(SrB))o(LPartx)N (0)) (U rng(S [B))O(Rpart>0N0 (0)))’ o,

U’\?/((Umg(sf )) (LPart>0N o)) (Urng( ))O(RPart>0No(o))>ﬂ0>'

Set U = Jrng(STA). Consider Sy being a many sorted set indexed
by DayA such that S(A) =S4 and for every o such that o € DayA holds




SURREAL NUMBERS: A STUDY OF SQUARE ROOTS 7

54(0) = (U f/(UO(LPartZONO (o))a Ue (RPartgoNo (o)))a o,

U T/(U"(LPart;ONo(o)), U°(Rpartsoy, ()} 0)- U (L)
- qurtoN0 (z)- qurtoNo(a:) C UO(LN1>' UO(RN1) - qurtoNo(z)~ qurtoNo (z) -
UO(RNl). O

(16) If U &/p,0 =0, then L, = (. The theorem is a consequence of (6).

(17) Let us consider surreal numbers x1, x2, y, z. Suppose z2 % Ono and
y =21 (227 !). Then

(i) y-y<ziffzy-21 < z-(x2-x2), and
(i) z<y-yiff z- (x2-22) < 21 - 27.

PROOF: If y-y < z, then 1 - @1 < z- (w9 -x2). If 21 - 21 < 2+ (22 x2), then
y-y<zlIlfz<y-y, then z- (z2-x9) < 1 -21. O

(18) If z < Ono, then | {/sqrtoy, (z),0 = 0 by [16l (70)].

PROOF: Define P[natural number] = ({/sqrtoy,(x),0)($1) = 0. P[0]. If
P[n], then Pln + 1]. P[n].
Consider a being an object such that a € | {/sqrtoy,(z),0. Con-

sider n being an object such that n € dom({/sqrtoy,(x),0) and a €

({/sqrtoy, (), 0)(n). O
(19) Suppose Ono < x. Then

(i) if y = /z, then Ono < y and y -y = x and if z ~ ONo, then y ~ ONo
and if Ono < z, then Ono < v, and

(ii) if y € L sz, then Ono <y and y -y < z, and
(iii) if y € Rz, then ONo <y and z <y -y, and
(iv) y/z is surreal.

PRrROOF: Define Ofordinal number| = for every z such that bornz = $;
and Ono < x holds /x is surreal and for every y such that y = y/z holds
Ono <y and y-y ~ z and if x =~ ONo, then y = On, and if Ono < x, then
Ono < y and for every y such that y € L.z holds Ono Sy and y -y <z
and for every y such that y € R, 7 holds Ono < y and z <y -y. For every
ordinal number D such that for every ordinal number C such that C € D
holds O[C] holds O[D]. For every ordinal number D, O[D]. O

(20) If x < Ono, then /x is surreal. The theorem is a consequence of (2),
(19), (10), (18), and (15).

Let us consider z. One can check that /x is surreal and sqrtoy, () is surreal.
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4. SELECTED SQUARE ROOT PROPERTIES

Now we state the propositions:
(21) If Ono < z, then Ono <z and /z - /z =
(22) If Ono =~ z, then /z =~ ONo.
(23) Suppose Ono < x. Then
(i) ify € L s, then Ono <y and y -y < z, and
(i) if y € Rz, then Ono <y and z <y -y.
(24) If x < Ono and for every y such that y € R, holds y < Ono, then

V7 = On.

PROOF: Define P[natural number| = (R Sqton, (), 2)($1) = 0. P0]. If

Pln], then P[n+ 1]. Pn]. U {/sartoy, (z),z = 0. U {/sartoy, (z),z = 0. O

(25) Suppose for every y such that y € LPart>oNo(:v) URPart 5o, (2) holds y ~
ONo. Then /z = sqrtoy, ().
PROOF: Define P[natural number] = ({/sartoy, (z),2)($1) = Lsqrtoy, (x)

and ({/sqrtoy, (), 2)($1) = Rasartoy, (x)- P[0]. If P[n], then Pln + 1]. P[n].

VT = (UW UW) Lz = Lsartoy, () Ryz =

qurtoNo(a:) by [ ) ( )] O
One can verify that /Ono reduces to Ono and +/1no reduces to 1y, and

v/ —1nNo reduces to —1no.
Now we state the propositions:

(26) If Ono < 2 < g, then \/z < /y. The theorem is a consequence of (19).
(27) If Ono < <y, then \/z < \/y. The theorem is a consequence of (19).
(28) If Ono < x = ¥y -y, then y =~ \/x or y & —\/x. The theorem is a conse-
quence of (19).
Let x be a positive surreal number. Let us observe that /x is positive.
Now we state the propositions:
(29) If ONo < z, then /2 -z ~ . The theorem is a consequence of (28) and
(19).
(30) If Ono < z, then \/z—! ~ vz—1. The theorem is a consequence of (21)
and (28).



SURREAL NUMBERS: A STUDY OF SQUARE ROOTS 9

5. SQUARE ROOT OF NEGATIVE SURREAL NUMBERS — OUTSIDE THE
DEFINED RANGE

Now we state the propositions:

(31) Let us consider a surreal number z. Suppose Ono < . Then there exists
a surreal number y such that

(i) —1No = y, and
(ii) /¥ < —z, and
(i) 5 = (0, {Ono, (vE- 7 F Ing — 2) - (Vi 7 T Tnig — 2)}).
The theorem is a consequence of (27), (29), (6), (15), (8), and (19).

(32) There exist surreal numbers z, y such that
(i) z =y < ONo, and

(i) VE < V5.

The theorem is a consequence of (31).
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