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Summary. This paper sets out to formalize the concept of the square
root as proposed by Clive Bach in the section entitled Properties of Division in
Conway’s book. The proposed construction extends the classical approach to the
square root of real numbers to include both infinitely large and infinitely small
numbers.
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Introduction

In the chapter The class No is a field [6], Conway also quotes the definition
of a square root of a surreal number [10] proposed by Clive Bach. This definition
is formulated in Conway’s typical way, using double recursion and the concept
and typical options as follows:

√
x = y =

{√
xL,

x+ yL · yR

yL + yR
|
√
xR,

x+ yL · yL•

yL + yL•
,
x+ yR · yR•

yR + yR•
}

(I.1)

where xL, xR represent non-negative options of x, while yL, yL•, yR, yR• denote
the options for y such that no denominator is zero. In addition, the construction
of this number is entirely absent, and the veracity of this definition is left to the
reader to demonstrate through an easy inductive proof.

In our formalization, we adapt the idea presented for the inverse element
proposed by Schleicher and Stoll [18], which was previously employed in our
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earlier formalization [14] in the Mizar system [4]. We first introduce a restriction
that limits the members of the sets Lx, Rx to those that are non-negative. Let
x be a surreal number. We define the function NNPart(x) (see Def. 1) to be

{0, {xL ∈ Lx | xL ­ 0} | {xR ∈ Rx | xR ­ 0}} (I.2)

and we prove that NNPart is born no later than x (see Th3) and ≈ x (see Th5)
for any non-negative x.

Then two sequences of sets of surreal numbers are introduced: {L√n, x0, x}n∈N,
{R√n, x0, x}n∈N for a given surreal number x and an initial pair of of surreal num-
ber sets x0. These sequences are defined (see Def. 3, Def. 4, Def. 5) recursively
as follows:

L
√

0, x0, x = Lx0 ,
R
√

0, x0, x = Rx0 ,
L
√
n+ 1, x0, x = L

√
n, x0, x ∪ S(x, L

√
n, x0, x, R

√
n, x0, x)

R
√
n+ 1, x0, x = R

√
n, x0, x ∪ S(x, L

√
n, x0, x, L

√
n, x0, x)

∪ S(x, R√n, x0, x, R
√
n, x0, x),

(I.3)

where S(x,A,B) = {x+a·ba+b | a ∈ X ∧ b ∈ Y ∧ a+ b 6= 0} and A and B represent
arbitrary sets of surreal numbers (see Def. 2).

The condition (I.1) can now be expressed in a more formal, but still recursive
way, as follows: √

x = 〈
⋃
n∈N

L
√
n, x0, x,

⋃
n∈N

R
√
n, x0, x〉 (I.4)

where x0 = 〈{√xL | xL ∈ LNNPart(x)}, {
√
xR | xR ∈ RNNPart(x)}〉.

To implement this kind of recursion in the Mizar system we use a sequence
α
√
· , where α

√
· is a function defined on day α for each ordinal α, with the

following definition:

α
√
x = 〈

⋃
n∈N

L

√
n, (

⋃
β<α

β
√
· )[LNNPart(x)], x

⋃
n∈N

R

√
n, (

⋃
β<α

β
√
· )[RNNPart(x)], x〉 (I.5)

where x represents an element of day α. It is important for understanding the
correctness of the definition that the constructed sequence is a ⊆-monotone in
the set-theoretic sense, so that we can treat

⋃
β<α

β
√
· as a function. We may

now define
√

(x) as α
√

(x), where α represents the day on which a given positive
x is born (see Def. 7) and satisfies the fundamental properties of square root
for non-negative real numbers such as: 0 ¬

√
x <

√
y for all surreal numbers

0 < x < y (see Th27),
√
x
−1 ≈

√
x−1 for positive surreal (see Th30).

The concept proposed by Clive Bach was initially introduced for non-negative
numbers; however, there are no inherent limitations to its application beyond
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the natural domain. We have shown that, outside the domain, the fundamental
property x ≈ y ⇒

√
x ≈ √y is lost. Indeed, we prove that

√
−1 = −1 (altho-

ugh obviously, this is not connected in a straightforward way with surcomplex
numbers [1]) and for any positive x we can construct a surreal number y ≈ −1
such that

√
y < −x (see Th31).

For a detailed exposition of the formalized topic, see [2] (for developments
in another systems – see [11] and [12], [21]). The development of the square root
provides a foundation for further advances, notably the integration of surreal
numbers [7] (cf. the discussion in [17]). Our formalization is oriented more to-
wards set theory [5], building on the Mizar framework (with recently improved
possibility of finding interconnections [19]), rather than the inductive-inductive
[8] HoTT approach, which however seems to be more natural (Sect. 11.6 of [20]).
This may be viewed as the first step in a longstanding program, initiated by
Conway, Kruskal, and Norton [9], aiming to develop analysis on No, beginning
with a genetic definition of integration [7].

1. Surreal Numbers Without Negative Options

From now on n, m denote natural numbers, o denotes an object, p denotes
a pair object, and x, y, z denote surreal numbers.

Let x be an object. The functor Part­0No(x) yielding a pair set is defined
by

(Def. 1) (o ∈ Lit iff there exists a surreal number l such that o = l and l ∈ Lx
and 0No ¬ l) and (o ∈ Rit iff there exists a surreal number r such that
o = r and r ∈ Rx and 0No ¬ r).

One can check that LPart­0No (x) is surreal-membered as a set and RPart­0No (x)
is surreal-membered as a set. Now we state the proposition:

(1) (i) LPart­0No (o) ⊆ Lo, and

(ii) RPart­0No (o) ⊆ Ro.

Let x be a surreal number. One can check that Part­0No(x) is surreal. Now
we state the propositions:

(2) (i) x ∈ LPart­0No (o) iff x ∈ Lo and 0No ¬ x, and

(ii) x ∈ RPart­0No (o) iff x ∈ Ro and 0No ¬ x.

(3) born Part­0No(x) ⊆ bornx.
Proof: Set N = Part­0No(x). For every object o such that o ∈ LN ∪RN

there exists an ordinal number O such that O ∈ bornx and o ∈ DayO. �

(4) If 0No ¬ x, then 0No ¬ Part­0No(x).
Proof: Set N = Part­0No(x). {0No} � RN . �
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(5) If 0No ¬ x, then Part­0No(x) ≈ x.
Proof: Set N = Part­0No(x). 0No ¬ N . LN � {x}. {N} � Rx by [15,
(11), (4)], [13, (43)]. Lx � {N}. {x} � RN . �

2. Square Root Construction

Let l1 be an object andX, Y be sets. The functor
√
l1, X, Y yielding a surreal-

membered set is defined by

(Def. 2) o ∈ it iff there exists x and there exists y such that x ∈ X and y ∈ Y
and x+ y 6≈ 0No and o = (l1 +′ x · y) · ((x+ y)−1).

Let x0 be a pair object and x be an object. The functor Transitions(x0, x)
yielding a function is defined by

(Def. 3) dom it = N and it(0) = x0 and for every n, it(n) is pair and (it(n+ 1))1 =
Lit(n) ∪

√
x,Lit(n),Rit(n) and (it(n+ 1))2 = (Rit(n) ∪

√
x,Lit(n),Lit(n)) ∪√

x,Rit(n),Rit(n).

The functor L
√
x0, x yielding a function is defined by

(Def. 4) dom it = N and for every natural number k, it(k) =
((Transitions(x0, x))(k))1.

The functor R
√
x0, x yielding a function is defined by

(Def. 5) dom it = N and for every natural number k, it(k) =
((Transitions(x0, x))(k))2.

Now we state the propositions:

(6) (i) (L
√
p, o)(0) = Lp, and

(ii) (R
√
p, o)(0) = Rp.

(7) If n ¬ m, then (L
√
p, o)(n) ⊆ (L

√
p, o)(m) and (R

√
p, o)(n) ⊆ (R

√
p, o)(m).

Proof: Define P[natural number] ≡ (L
√
p, o)(n) ⊆ (L

√
p, o)(n + $1) and

(R
√
p, o)(n) ⊆ (R

√
p, o)(n+ $1). For every natural number k such that P[k]

holds P[k + 1]. For every natural number k, P[k]. �

(8) (i) (L
√
p, o)(n+ 1) = (L

√
p, o)(n) ∪

√
o, (L
√
p, o)(n), (R

√
p, o)(n), and

(ii) (R
√
p, o)(n+ 1) = ((R

√
p, o)(n) ∪

√
o, (L
√
p, o)(n), (L

√
p, o)(n))∪√

o, (R
√
p, o)(n), (R

√
p, o)(n).

(9) Suppose Lp is surreal-membered and Rp is surreal-membered. Then

(i) (L
√
p, o)(n) is surreal-membered, and

(ii) (R
√
p, o)(n) is surreal-membered.
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Proof: Define P[natural number] ≡ (L
√
p, o)($1) is surreal-membered and

(R
√
p, o)($1) is surreal-membered. P[0]. For every n such that P[n] holds

P[n+ 1]. For every n, P[n]. �

(10) Suppose Lp is surreal-membered and Rp is surreal-membered. Then

(i)
⋃

L
√
p, o is surreal-membered, and

(ii)
⋃

R
√
p, o is surreal-membered.

Proof:
⋃

L
√
p, o is surreal-membered. Consider n being an object such

that n ∈ dom(R
√
p, o) and a ∈ (R

√
p, o)(n). (R

√
p, o)(n) is surreal-membered.

�

(11) Let us consider sets X1, X2, Y1, Y2. Suppose X1 ⊆ X2 and Y1 ⊆ Y2.
Then

√
o,X1, Y1 ⊆

√
o,X2, Y2.

(12)
⋃

L
√
p, o = Lp ∪

√
o,
⋃

L
√
p, o,

⋃
R
√
p, o.

Proof: Define P[natural number] ≡ (L
√
p, o)($1) ⊆ Lp ∪√

o,
⋃

L
√
p, o,

⋃
R
√
p, o. (L

√
p, o)(0) = Lp. If P[n], then P[n+1]. P[n].

⋃
L
√
p, o ⊆

Lp ∪
√
o,
⋃

L
√
p, o,

⋃
R
√
p, o.

√
o,
⋃

L
√
p, o,

⋃
R
√
p, o ⊆

⋃
L
√
p, o. Lp = (L

√
p, o)(0).

�

(13)
⋃

R
√
p, o = (Rp ∪

√
o,
⋃

L
√
p, o,

⋃
L
√
p, o) ∪

√
o,
⋃

R
√
p, o,

⋃
R
√
p, o.

Proof: Define P[natural number] ≡ (R
√
p, o)($1) ⊆

(Rp ∪
√
o,
⋃

L
√
p, o,

⋃
L
√
p, o)∪

√
o,
⋃

R
√
p, o,

⋃
R
√
p, o. (R

√
p, o)(0) = Rp. If P[n],

then P[n+ 1]. P[n].
⋃

R
√
p, o ⊆ (Rp ∪

√
o,
⋃

L
√
p, o,

⋃
L
√
p, o)∪√

o,
⋃

R
√
p, o,

⋃
R
√
p, o.

√
o,
⋃

L
√
p, o,

⋃
L
√
p, o ⊆

⋃
R
√
p, o.

√
o,
⋃

R
√
p, o,

⋃
R
√
p, o

⊆
⋃

R
√
p, o. Rp = (R

√
p, o)(0). �

3. The Square Root of a Surreal Number

Let A be an ordinal number. The functor sqrtNo(A) yielding a many sorted
set indexed by DayA is defined by

(Def. 6) there exists a ⊆-monotone, function yielding transfinite sequence S such
that domS = succA and it = S(A) and for every ordinal number B such
that B ∈ succA there exists a many sorted set S4 indexed by DayB such
that S(B) = S4 and for every object x such that x ∈ DayB holds S4(x) =
〈〈
⋃

L

√
〈〈(
⋃

rng(S�B))◦(LPart­0No (x)), (
⋃

rng(S�B))◦(RPart­0No (x))〉〉, x,⋃
R

√
〈〈(
⋃

rng(S�B))◦(LPart­0No (x)), (
⋃

rng(S�B))◦(RPart­0No (x))〉〉, x〉〉.
Now we state the proposition:
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(14) Let us consider a ⊆-monotone, function yielding transfinite sequence S.
Suppose for every ordinal number B such that B ∈ domS there exists
a many sorted set S4 indexed by DayB such that S(B) = S4 and for every
o such that o ∈ DayB holds S4(o) =
〈〈
⋃

L

√
〈〈(
⋃

rng(S�B))◦(LPart­0No (o)), (
⋃

rng(S�B))◦(RPart­0No (o))〉〉, o,⋃
R

√
〈〈(
⋃

rng(S�B))◦(LPart­0No (o)), (
⋃

rng(S�B))◦(RPart­0No (o))〉〉, o〉〉. Let us

consider an ordinal number A. If A ∈ domS, then sqrtNo(A) = S(A).
Proof: DefineD(ordinal number) = Day$1. DefineH(object,⊆-monotone,
function yielding transfinite sequence) =
〈〈
⋃

L

√
〈〈(
⋃

rng $2)◦(LPart­0No ($1)), (
⋃

rng $2)◦(RPart­0No ($1))〉〉, $1,⋃
R

√
〈〈(
⋃

rng $2)◦(LPart­0No ($1)), (
⋃

rng $2)◦(RPart­0No ($1))〉〉, $1〉〉.
Consider S2 being a⊆-monotone, function yielding transfinite sequence

such that domS2 = succA and S2(A) = sqrtNo(A) and for every ordinal
number B such that B ∈ succA there exists a many sorted set S4 indexed
by D(B) such that S2(B) = S4 and for every object x such that x ∈ D(B)
holds S4(x) = H(x, S2�B). S1� succA = S2� succA. �

Let o be an object. Assume o is a surreal number. The functor
√
o yielding

a set is defined by

(Def. 7) for every x such that x = o holds it = (sqrtNo(bornx))(x).

Let x be a surreal number. Observe that the functor
√
x yields a set and is

defined by the term

(Def. 8) (sqrtNo(bornx))(x).

Let x be an object. The functor sqrt0No(x) yielding a pair set is defined by

(Def. 9) (o ∈ Lit iff there exists a surreal number l such that o =
√
l and l ∈

LPart­0No (x)) and (o ∈ Rit iff there exists a surreal number r such that
o =
√
r and r ∈ RPart­0No (x)).

Now we state the propositions:

(15)
√
x = 〈〈

⋃
L

√
sqrt0No(x), x,

⋃
R

√
sqrt0No(x), x〉〉.

Proof: Set A = bornx. Set N1 = Part­0No(x). Consider S being a ⊆-
monotone, function yielding transfinite sequence such that domS = succA
and sqrtNo(A) = S(A) and for every ordinal number B such that B ∈
succA there exists a many sorted set S4 indexed by DayB such that
S(B) = S4 and for every object o such that o ∈ DayB holds S4(o) =
〈〈
⋃

L

√
〈〈(
⋃

rng(S�B))◦(LPart­0No (o)), (
⋃

rng(S�B))◦(RPart­0No (o))〉〉, o,⋃
R

√
〈〈(
⋃

rng(S�B))◦(LPart­0No (o)), (
⋃

rng(S�B))◦(RPart­0No (o))〉〉, o〉〉.
Set U =

⋃
rng(S�A). Consider S4 being a many sorted set indexed

by DayA such that S(A) = S4 and for every o such that o ∈ DayA holds
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S4(o) = 〈〈
⋃

L

√
〈〈U◦(LPart­0No (o)), U

◦(RPart­0No (o))〉〉, o,⋃
R

√
〈〈U◦(LPart­0No (o)), U

◦(RPart­0No (o))〉〉, o〉〉. U
◦(LN1)

⊆ Lsqrt0No (x). Lsqrt0No (x) ⊆ U
◦(LN1). U

◦(RN1) ⊆ Rsqrt0No (x). Rsqrt0No (x) ⊆
U◦(RN1). �

(16) If
⋃

L
√
p, o = ∅, then Lp = ∅. The theorem is a consequence of (6).

(17) Let us consider surreal numbers x1, x2, y, z. Suppose x2 6≈ 0No and
y = x1 · (x2−1). Then

(i) y · y < z iff x1 · x1 < z · (x2 · x2), and

(ii) z < y · y iff z · (x2 · x2) < x1 · x1.

Proof: If y · y < z, then x1 ·x1 < z · (x2 ·x2). If x1 ·x1 < z · (x2 ·x2), then
y · y < z. If z < y · y, then z · (x2 · x2) < x1 · x1. �

(18) If x ¬ 0No, then
⋃

L

√
sqrt0No(x), o = ∅ by [16, (70)].

Proof: Define P[natural number] ≡ (L
√

sqrt0No(x), o)($1) = ∅. P[0]. If
P[n], then P[n+ 1]. P[n].

Consider a being an object such that a ∈
⋃

L

√
sqrt0No(x), o. Con-

sider n being an object such that n ∈ dom(L
√

sqrt0No(x), o) and a ∈

(L
√

sqrt0No(x), o)(n). �

(19) Suppose 0No ¬ x. Then

(i) if y =
√
x, then 0No ¬ y and y · y ≈ x and if x ≈ 0No, then y ≈ 0No

and if 0No < x, then 0No < y, and

(ii) if y ∈ L√x, then 0No ¬ y and y · y < x, and

(iii) if y ∈ R√x, then 0No < y and x < y · y, and

(iv)
√
x is surreal.

Proof: Define O[ordinal number] ≡ for every x such that bornx = $1
and 0No ¬ x holds

√
x is surreal and for every y such that y =

√
x holds

0No ¬ y and y · y ≈ x and if x ≈ 0No, then y ≈ 0No and if 0No < x, then
0No < y and for every y such that y ∈ L√x holds 0No ¬ y and y · y < x

and for every y such that y ∈ R√x holds 0No < y and x < y · y. For every
ordinal number D such that for every ordinal number C such that C ∈ D
holds O[C] holds O[D]. For every ordinal number D, O[D]. �

(20) If x ¬ 0No, then
√
x is surreal. The theorem is a consequence of (2),

(19), (10), (18), and (15).

Let us consider x. One can check that
√
x is surreal and sqrt0No(x) is surreal.
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4. Selected Square Root Properties

Now we state the propositions:

(21) If 0No ¬ x, then 0No ¬
√
x and

√
x ·
√
x ≈ x.

(22) If 0No ≈ x, then
√
x ≈ 0No.

(23) Suppose 0No ¬ x. Then

(i) if y ∈ L√x, then 0No ¬ y and y · y < x, and

(ii) if y ∈ R√x, then 0No < y and x < y · y.

(24) If x < 0No and for every y such that y ∈ Rx holds y < 0No, then√
x = 0No.

Proof: Define P[natural number] ≡ (R
√

sqrt0No(x), x)($1) = ∅. P[0]. If

P[n], then P[n+ 1]. P[n].
⋃

R

√
sqrt0No(x), x = ∅.

⋃
L

√
sqrt0No(x), x = ∅. �

(25) Suppose for every y such that y ∈ LPart­0No (x) ∪RPart­0No (x) holds y ≈
0No. Then

√
x = sqrt0No(x).

Proof: Define P[natural number] ≡ (L
√

sqrt0No(x), x)($1) = Lsqrt0No (x)

and (R
√

sqrt0No(x), x)($1) = Rsqrt0No (x). P[0]. If P[n], then P[n+ 1]. P[n].
√
x = 〈〈

⋃
L

√
sqrt0No(x), x,

⋃
R

√
sqrt0No(x), x〉〉. L√x = Lsqrt0No (x). R√x =

Rsqrt0No (x) by [3, (1)]. �

One can verify that
√
0No reduces to 0No and

√
1No reduces to 1No and√

−1No reduces to −1No.
Now we state the propositions:

(26) If 0No ¬ x ¬ y, then
√
x ¬ √y. The theorem is a consequence of (19).

(27) If 0No ¬ x < y, then
√
x <
√
y. The theorem is a consequence of (19).

(28) If 0No ¬ x ≈ y · y, then y ≈
√
x or y ≈ −

√
x. The theorem is a conse-

quence of (19).

Let x be a positive surreal number. Let us observe that
√
x is positive.

Now we state the propositions:

(29) If 0No ¬ x, then
√
x · x ≈ x. The theorem is a consequence of (28) and

(19).

(30) If 0No < x, then
√
x−1 ≈

√
x−1. The theorem is a consequence of (21)

and (28).
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5. Square Root of Negative Surreal Numbers – Outside the
Defined Range

Now we state the propositions:

(31) Let us consider a surreal number x. Suppose 0No < x. Then there exists
a surreal number y such that

(i) −1No ≈ y, and

(ii)
√
y < −x, and

(iii) y = 〈〈∅, {0No, (
√
x · x+ 1No − x) · (

√
x · x+ 1No − x)}〉〉.

The theorem is a consequence of (27), (29), (6), (15), (8), and (19).

(32) There exist surreal numbers x, y such that

(i) x ≈ y < 0No, and

(ii)
√
x <
√
y.

The theorem is a consequence of (31).
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