Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/19034
Pełny rekord metadanych
Pole DC | Wartość | Język |
---|---|---|
dc.contributor.author | Kuryłek, Wojciech | - |
dc.date.accessioned | 2025-10-14T07:34:57Z | - |
dc.date.available | 2025-10-14T07:34:57Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Optimum. Economic Studies, Nr 3(121) 2025, s. 356-381 | pl |
dc.identifier.issn | 1506-7637 | - |
dc.identifier.uri | http://hdl.handle.net/11320/19034 | - |
dc.description.abstract | Purpose | The present analysis evaluates the forecasting capabilities of seven distinct methodologies: seasonal random walk (SRW), Laurent framework (L), Lev and Thiagarajan approach (LT), Residual Income methodology (RI), Pope and Wang framework (PW), Earnings Persistence approach (EP), and Hou, van Dijk, and Zhang methodology (HDZ) in predicting earnings per share. Research method | It uses the eXtreme Gradient Boosting (XGBoost) approach, which can handle non-stationary data. This approach is one of the most efficient to apply for tabular data. To examine accuracy of predictions various metrics are utilised and the statistical significance of difference between them is tested using the Wilcoxon and Brunner-Munzel tests. Results | Both the seasonal random walk framework and the Pope Wang methodology, when implemented through XGBoost, exhibited minimal prediction errors and generated superior representations of the Polish market dynamics relative to alternative approaches. Originality / value / implications / recommendations | Such comprehensive application of multiple models for earnings per share prediction within the Polish market utilising XGBoost methodology represents an unprecedented approach. The notable effectiveness of the relatively simple seasonal random walk framework potentially reflects the less complex characteristics of the Polish equity market. In contrast, the robust performance of the Pope Wang framework indicates the importance of specific financial indicators. | pl |
dc.language.iso | en | pl |
dc.publisher | Wydawnictwo Uniwersytetu w Białymstoku | pl |
dc.subject | earnings per share | pl |
dc.subject | random walk | pl |
dc.subject | multivariate approach | pl |
dc.subject | XGBoost | pl |
dc.subject | financial forecasting | pl |
dc.subject | Warsaw Stock Exchange | pl |
dc.title | How XGBoost May Help in Multivariate EPS Forecasting for Companies Listed on the Warsaw Stock Exchange | pl |
dc.type | Article | pl |
dc.rights.holder | © Copyright by Uniwersytet w Białymstoku | pl |
dc.identifier.doi | 10.15290/oes.2025.03.121.19 | - |
dc.description.Email | wkurylek@wz.uw.edu.pl | pl |
dc.description.Affiliation | University of Warsaw | pl |
dc.description.references | Abarbanell J., Bushee B., 1997, Fundamental Analysis, Future EPS, and Stock Prices, “Journal of Accounting Research”, vol. 35(1), pp.1–24, DOI: 10.2307/2491464. | pl |
dc.description.references | Ahmadpour A., Etemadi H., Moshashaei S., 2015, Earnings Per Share Forecast Using Extracted Rules from Trained Neural Network by Genetic Algorithm, “Computational Economics”, vol. 46(1), pp. 55–63, DOI: 10.1007/s10614-014-9455-6. | pl |
dc.description.references | Ball R., Ghysels E., 2017, Automated Earnings Forecasts: Beat Analysts or Combine and Conquer?, “Management Science”, vol. 64(10), pp. 4936–4952, DOI: 10.1287/mnsc.2017.2864. | pl |
dc.description.references | Ball R., Watts R., 1972, Some Time Series Properties of Accounting Income, “The Journal of Finance”, vol. 27(3), pp. 663–681, DOI: 10.1111/j.1540–6261.1972.tb00991.x. | pl |
dc.description.references | Banerjee P., 2020, A Guide on XGBoost Hyperparameters Tuning, https://www.kaggle.com/code/prashant111/a-guide-on-xgboost-hyperparameters-tuning [date of access: 14.07.2024]. | pl |
dc.description.references | Bathke Jr. A.W., Lorek K.S., 1984, The Relationship between Time-Series Models and the Security Market’s Expectation of Quarterly Earnings, “The Accounting Review”, vol. 59(2), pp. 163–176. | pl |
dc.description.references | Bentéjac C., Csörgő A., Martínez-Muñoz G., 2020, A Comparative Analysis of Gradient Boosting Algorithms, “Artificial Intelligence Review”, vol. 54(3), pp. 1937–1967, DOI: 10.1007/s10462-020-09896-5. | pl |
dc.description.references | Boldini D., Grisoni F., Kuhn D., Friedrich L., Sieber S.A., 2023, Practical Guidelines for the Use of Gradient Boosting for Molecular Property Prediction, “Journal of Cheminformatics”, vol. 15(1), pp. 1–13, DOI: 10.1186/s13321-023-00743-7. | pl |
dc.description.references | Bradshaw M., Drake M., Myers J., Myers L., 2012, A Re-examination of Analysts’ Superiority over Time-series Forecasts of Annual Earnings, “Review of Accounting Studies”, vol. 17(4), pp. 944–968, DOI: 10.1007/s11142-012-9185-8. | pl |
dc.description.references | Brandon Ch., Jarrett J.E., Khumawala S.B., 1986, Comparing Forecast Accuracy for Exponential Smoothing Models of Earnings-per-share Data for Financial Decision Making, “Decision Sciences”, vol. 17(2), pp. 186–194, DOI: 10.1111/j.1540-5915.1986.tb00220.x. | pl |
dc.description.references | Brandon Ch., Jarrett J.E., Khumawala S.B., 1987, A Comparative Study of the Forecasting Accuracy of Holt‐Winters and Economic Indicator Models of Earnings Per Share For Financial Decision Making, “Managerial Finance”, vol. 13(2), pp. 10–15, DOI: 10.1108/eb013581. | pl |
dc.description.references | Brooks L.D., Buckmaster D.A., 1976, Further Evidence Of The Time Series Properties Of Accounting Income, “The Journal of Finance”, vol. 31(5), pp. 1359–1373, DOI: 10.1111/j.1540-6261.1976.tb03218.x. | pl |
dc.description.references | Brown L.D., Griffin P.A., Hagerman R.L., Zmijewski M.E., 1987, Security Analyst Superiority Relative to Univariate Time-series Models in Forecasting Quarterly Earnings, “Journal of Accounting and Economics”, vol. 9(1), pp. 61–87, DOI: 10.1016/0165-4101(87)90017-6. | pl |
dc.description.references | Brown L.D., Rozeff M.S., 1979, Univariate Time-Series Models of Quarterly Accounting Earnings per Share: A Proposed Model, “Journal of Accounting Research”, vol. 17(1), pp. 179–189, DOI: 10.2307/2490312. | pl |
dc.description.references | Brunner E., Munzel U., 2000, The Nonparametric Benhrens-Fisher Problem: Asymptotic Theory and a Amall-sample Approximation, “Biometrical Journal”, vol. 42, pp. 17–25, DOI: 10.1002/(sici)1521-4036(200001)42:1<17::aid-bimj17>3.0.co;2-u. | pl |
dc.description.references | Cao Q., Gan Q., 2009, Forecasting EPS of Chinese Listed Companies Using a Neural Network with Genetic Algorithm, 15th Americas Conference on Information Systems 2009, AMCIS 2009, pp. 2791–2981. | pl |
dc.description.references | Cao Q., Parry M., 2009, Neural Network Earnings per Share Forecasting Models: A Comparison of Backward Propagation and the Genetic Algorithm, “Decision Support Systems”, vol. 47(1), pp. 32–41, DOI: 10.1016/j.dss.2008.12.011. | pl |
dc.description.references | Chen Y., Chen S., Huang H., Sangaiah A., 2020, Applied Identification of Industry Data Science Using an Advanced Multi-componential Discretization Model, “Symmetry”, vol. 12(10), pp. 1–28, DOI: 10.3390/sym12101620. | pl |
dc.description.references | Chen T., Guestrin C., 2016, XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794, DOI: 10.1145/2939672.2939785. | pl |
dc.description.references | Conroy R., Harris R., 1987, Consensus Forecasts of Corporate Earnings: Analysts’ Forecasts and Time Series Methods, “Management Science”, vol. 33(6), pp. 725–738, DOI: 10.1287/mnsc.33.6.725. | pl |
dc.description.references | Delen D., Kuzey C., Uyar A., 2013, Measuring Firm Performance Using Financial Ratios: A Decision Tree Approach, “Expert Systems with Applications”, vol. 40(10), pp. 3970–3983, DOI: 10.1016/j.eswa.2013.01.012. | pl |
dc.description.references | Dreher S., Eichfelder S., Noth F., 2024, Does IFRS Information on Tax Loss Carryforwards and Negative Performance Improve Predictions of Earnings and Cash Flows?, “Journal of Business Economics”, vol. 94(1), pp. 1–39, DOI: 10.1007/s11573-023-01147-7. | pl |
dc.description.references | Elamir E., 2020, Modeling and Predicting Earnings per Share via Regression Tree Approaches in Banking Sector: Middle East and North African Countries Case, “Investment Management and Financial Innovations”, vol. 17(2), pp. 51–68. DOI: 10.21511/imfi.17(2).2020.05. | pl |
dc.description.references | Elton E.J., Gruber M.J., 1972, Earnings Estimates and the Accuracy of Expectational Data, “Management Science”, vol. 18(8), pp. B409-B424, DOI: 10.1287/mnsc.18.8.B409. | pl |
dc.description.references | Foster G., 1977, Quarterly Accounting Data: Time-Series Properties and Predictive-Ability Results, “The Accounting Review”, vol. 52(1), pp. 1–21. | pl |
dc.description.references | Gaio L., Gatsios R, Lima F., Piamenta Jr. T., 2021, Re-examining Analyst Superiority in Forecasting Results of Publicly-traded Brazilian Companies, “Revista de Administracao Mackenzie”, vol. 22(1), pp. eRAMF210164, DOI: 10.1590/1678-6971/eramf210164. | pl |
dc.description.references | Gramacy R.B., Gerakos J., 2013, Regression-Based Earnings Forecasts, Chicago Booth Research Paper, no. 12–26, DOI: 10.2139/ssrn.2112137. | pl |
dc.description.references | Griffin P., 1977, The Time-Series Behavior of Quarterly Earnings: Preliminary Evidence, “Journal of Accounting Research”, vol. 15(1), pp. 71–83, DOI: 10.2307/2490556. | pl |
dc.description.references | Harris R.D. F., Wang P., 2019, Model-based Earnings Forecasts vs. Financial Analysts’ Earnings Forecasts, “British Accounting Review”, vol. 51(4), pp. 424–437, DOI: 10.1016/j.bar.2018.10.002. | pl |
dc.description.references | Hou K., van Dijk M., Zhang Y., 2012, The Implied Cost of Capital: A New Approach, “Journal of Accounting and Economics”, vol. 53(3), pp. 504–526, DOI: 10.1016/j.jacce‑co.2011.12.001. | pl |
dc.description.references | Jarrett J.E., 2008, Evaluating Methods for Forecasting Earnings Per Share, “Managerial Finance”, vol. 16, pp. 30–35, DOI: 10.1108/eb013647. | pl |
dc.description.references | Johnson T.E., Schmitt T.G., 1974, Effectiveness of Earnings Per Share Forecasts, “Financial Management”, vol. 3(2), pp. 64–72, DOI: 10.2307/3665292. | pl |
dc.description.references | Kim S., Kim H., 2016, A New Metric of Absolute Percentage Error for Intermittent Demand Forecasts, “International Journal of Forecasting”, vol. 32(3), pp. 669–679, DOI: 10.1016/j.ijforecast.2015.12.003. | pl |
dc.description.references | Kuryłek W., 2023a, The Modeling of Earnings per Share of Polish Companies for the Post-financial Crisis Period Using Random Walk and ARIMA Models, “Journal of Banking and Financial Economics”, vol. 1(19), pp. 26–43, DOI: 10.7172/2353-6845.jbfe.2023.1.2. | pl |
dc.description.references | Kuryłek W., 2023b, Can Exponential Smoothing Do Better thanSeasonal Random Walk for Earnings per Share Forecasting in Poland?, “Bank & Credit”, vol. 54(6), pp. 651–672. | pl |
dc.description.references | Lacina M., Lee B., Xu R., 2011, An Evaluation of Financial Analysts and Naïve Methods in Forecasting Long-term Earnings, [in:] Lawrence K.D.,, Klimberg R.K., (eds), Advances in Business and Management Forecasting, pp. 77–101, Bingley, UK, Emerald, DOI: 10.1108/S1477-4070(2011)0000008009. | pl |
dc.description.references | Laurent C., 1979, Improving the Efficiency and Effectiveness of Financial Ratio Analysis, “Journal of Business Finance & Accounting”, vol. 6(3), pp. 401–413, DOI: 10.1111/j.1468-5957.1979.tb01099.x. | pl |
dc.description.references | Lev B., Souginannis T., 2010, The Usefulness of Accounting Estimates for Predicting Cash Flows and Earnings, “Review of Accounting Studies”, vol. 15(4), pp. 779–807, DOI: 10.1007/s11142-009-9107-6. | pl |
dc.description.references | Lev B., Thiagarajan S., 1993, Fundamental Information Analysis, “Journal of Accounting Research”, vol. 31(2), pp. 190–215, DOI: 10.2307/2491270. | pl |
dc.description.references | Li K.K., 2011, How Well Do Investors Understand Loss Persistence?, “Review of Accounting Studies”, vol. 16(3), pp. 630–667, DOI: 10.1007/s11142-011-9157-4. | pl |
dc.description.references | Li K.K., Mohanram P., 2014, Evaluating Cross-sectional Forecasting Models for the Implied Cost of Capital, “Review of Accounting Studies”, vol. 19(3), pp. 1152–1185, DOI: 10.1007/s11142-014-9282-y. | pl |
dc.description.references | Lorek K.S., 1979, Predicting Annual Net Earnings with Quarterly Earnings Time-Series Models, “Journal of Accounting Research”, vol. 17(1), pp. 190–204, DOI: 10.2307/2490313. | pl |
dc.description.references | Lorek K. S, Willinger G.L., 1996, A Multivariate Time-series Model for Cash-flow Data, “Accounting Review”, vol. 71, pp. 81–101. | pl |
dc.description.references | Ohlson J.A., 1995, Earnings, Book Values, and Dividends in Equity Valuation, “Contemporary Accounting Research”, vol. 11(2), pp. 661–687, DOI: 10.1092/7tpj-rxqn-tqc7-ffae. | pl |
dc.description.references | Ohlson J.A., 2001, Earnings, Book Values, and Dividends in Equity Valuation: An Empirical Perspective, “Contemporary Accounting Research”, vol. 18(1), pp. 107–120, DOI; 10.1092/7tpj-rxqn-tqc7-ffae. | pl |
dc.description.references | Ohlson J.A., Juettner-Nauroth B.E., 2005, Expected EPS and EPS Growth as Determinants of Value, “Review of Accounting Studies”, vol. 10(2–3), pp. 349–365, DOI: 10.1007/s11142-005-1535-3. | pl |
dc.description.references | Pagach D.P., Warr R.S., 2020, Analysts versus Time-series Forecasts of Quarterly Earnings: A Maintained Hypothesis Revisited, “Advances in Accounting”, vol. 51, pp. 1–15, DOI: 10.1016/j.adiac.2020.100497. | pl |
dc.description.references | Pope P.F., Wang P., 2005, Earnings Components, Accounting Bias and Equity Valuation, “Review of Accounting Studies”, pp. 10(4), pp. 387–407, DOI: 10.1007/s11142-005-4207-4. | pl |
dc.description.references | Pope P.F., Wang P., 2014, On the Relevance of Earnings Components: Valuation and Forecasting Links, “Review of Quantitative Finance and Accounting”, vol. 42, pp. 399–413, DOI: 10.1007/s11156-013-0347-y. | pl |
dc.description.references | Ruland W., 1980, On the Choice of Simple Extrapolative Model Forecasts of Annual Earnings, “Financial Management”, vol. 9(2), pp. 30–37, DOI: 10.2307/3665165. | pl |
dc.description.references | Simon J., 2020, Learn Amazon SageMaker: A Guide to Building, Training, and Deploying Machine Learning Models for Developers and Data Scientists, Packt> Birmingham – Mumbai. | pl |
dc.description.references | Türkmen G., Sezen A., 2024, A Comparative Analysis of XGBoost and LightGBM Approaches for Human Activity Recognition: Speed and Accuracy Evaluation. “International Journal of Computational and Experimental Science and Engineering”, vol. 10(2), pp. 262–270, DOI: 10.22399/ijcesen.329. | pl |
dc.description.references | Watts R.L., 1975, The Time Series Behavior of Quarterly Earnings, “Working paper, Department of Commerce”, University of New Castle, April 1975. | pl |
dc.description.references | Wilcoxon F., 1945, Individual Comparisons by Ranking Methods, “Biometrics”, vol. 1, pp. 80–83, DOI: 10.2307/3001968. | pl |
dc.description.references | Xiaoqiang W., 2022, Research on Enterprise Financial Performance Evaluation Method Based on Data Mining, [in:] 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI), DOI: /10.1109/icetci55101.2022.9832404. | pl |
dc.description.number | 3(121) | pl |
dc.description.firstpage | 356 | pl |
dc.description.lastpage | 381 | pl |
dc.identifier.citation2 | Optimum. Economic Studies | pl |
dc.identifier.orcid | 0000-0003-0692-3300 | - |
Występuje w kolekcji(ach): | Optimum. Economic Studies, 2025, nr 3(121) |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
Optimum_3_2025_W_Kurylek_How_XGBoost_May_Help_in_Multivariate_EPS_Forecasting.pdf | 364,17 kB | Adobe PDF | Otwórz |
Pozycja jest chroniona prawem autorskim (Copyright © Wszelkie prawa zastrzeżone)