REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/18166
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorJastrzębska, Izabella-
dc.contributor.authorWawrusiewicz-Kurylonek, Natalia-
dc.contributor.authorGrześ, Paweł A.-
dc.contributor.authorRatkiewicz, Artur-
dc.contributor.authorGrabowska, Ewa-
dc.contributor.authorCzerniecka, Magdalena-
dc.contributor.authorCzyżewska, Urszula-
dc.contributor.authorTylicki, Adam-
dc.date.accessioned2025-04-04T06:50:29Z-
dc.date.available2025-04-04T06:50:29Z-
dc.date.issued2023-
dc.identifier.citationMolecules Volume 28, Issue 22 (2023), p. 7528pl
dc.identifier.issn1420-3049-
dc.identifier.urihttp://hdl.handle.net/11320/18166-
dc.description.abstractCytostatic and pro-apoptotic effects of selenium steroid derivatives against HeLa cells were determined. The highest cytostatic activity was shown by derivative 4 (GI₅₀25.0 µM, almost complete growth inhibition after three days of culture, and over 97% of apoptotic and dead cells at 200 µM). The results of our study (cell number measurements, apoptosis profile, relative expression of apoptosis related APAF1, BID, and mevalonate pathway-involved HMGCR, SQLE, CYP51A1, and PDHB genes, and computational chemistry data) support the hypothesis that tested selenosteroids induce the extrinsic pathway of apoptosis by affecting the cell membrane as cholesterol antimetabolites. An additional mechanism of action is possible through a direct action of derivative 4 to inhibit PDHB expression in a way similar to steroid hormones.pl
dc.description.sponsorshipThis study was supported by the Ministry of Education and Science, Poland, as a part of subsidies for maintaining the research potential granted to the Faculty of Biology (SWB-8) and Faculty of Chemistry of the University of Białystok. The equipment used for the cell culture at the Laboratory of Tissue Culture was funded by the Ministry of Science and Higher Education (grant no. 8636/E342/R/2014; Restructuration of Faculty of Biology and Chemistry). This work was financed from a scientific project by the subsidy of the Medical University of Bialystok (B.SUB.23.306).pl
dc.language.isoenpl
dc.publisherMDPIpl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectantimetabolitespl
dc.subjectcell growth inhibitionpl
dc.subjectgene expressionpl
dc.subjectHeLa cellspl
dc.titleNew Steroidal Selenides as Proapoptotic Factorspl
dc.typeArticlepl
dc.rights.holderCopyright: © 2023 by the authors.pl
dc.rights.holderThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).pl
dc.identifier.doi10.3390/molecules28227528-
dc.description.EmailIzabella Jastrzębska: i.jastrzebska@uwb.edu.plpl
dc.description.EmailAdam Tylicki: atyl@uwb.edu.plpl
dc.description.AffiliationIzabella Jastrzębska - Faculty of Chemistry, University of Białystokpl
dc.description.AffiliationNatalia Wawrusiewicz-Kurylonek - Department of Clinical Genetics, Medical University of Białystokpl
dc.description.AffiliationPaweł A. Grześ - Faculty of Chemistry, University of Białystokpl
dc.description.AffiliationArtur Ratkiewicz - Faculty of Chemistry, University of Białystokpl
dc.description.AffiliationEwa Grabowska - Doctoral School of Exact and Natural Sciences, University of Bialystokpl
dc.description.AffiliationMagdalena Czerniecka - Faculty of Biology, University of Białystokpl
dc.description.AffiliationUrszula Czyzewska - Faculty of Biology, University of Białystokpl
dc.description.AffiliationAdam Tylicki - Faculty of Biology, University of Białystokpl
dc.description.referencesJastrzebska, I.; Grzes, P.A.; Niemirowicz-Laskowska, K.; Car, H. Selenosteroids—Promising hybrid compounds with pleiotropic biological activity: Synthesis and biological aspects. J. Steroid Biochem. Mol. Biol. 2021, 213, 105975.pl
dc.description.referencesRomero-Hernández, L.L.; Merino-Montiel, P.; Montiel-Smith, S.; Meza-Reyes, S.; Vega-Báez, J.L.; Abasolo, I.; Schwartz, S.; López, Ó.; Fernández-Bolaños, J.G. Diosgenin-based thio(seleno)ureas and triazolyl glycoconjugates as hybrid drugs. Antioxidant and antiproliferative profile. Eur. J. Med. Chem. 2015, 99, 67–81.pl
dc.description.referencesFuentes-Aguilar, A.; Romero-Hernández, L.L.; Arenas-González, A.; Merino-Montiel, P.; Montiel-Smith, S.; Meza-Reyes, S.; Vega-Báez, J.L.; Plata, G.B.; Padrón, J.M.; López, Ó.; et al. New selenosteroids as antiproliferative agents. Org. Biomol. Chem. 2017, 15, 5041–5054.pl
dc.description.referencesHuang, Y.; Peng, Z.; Wei, M.; Gan, C.; Zhang, Y.; Chen, S.; Xiao, J.; Cui, J. Synthesis and antiproliferative evaluation of some novel estradiol selenocyanates. Steroids 2022, 181, 108992.pl
dc.description.referencesHuang, Y.; Peng, Z.; Wei, M.; Pang, L.; Cheng, Y.; Xiao, J.-A.; Gan, C.; Cui, J. Straightforward synthesis of steroidal selenocyanates through oxidative umpolung selenocyanation of steroids and their antitumor activity. J. Steroid Biochem. Mol. Biol. 2023, 225, 106203.pl
dc.description.referencesHuang, Y.-M.; Cheng, Y.; Peng, Z.-N.; Pang, L.-P.; Li, J.-Y.; Xiao, J.-A.; Zhang, Y.-F.; Cui, J.-G. Synthesis and antitumor activity of some cholesterol-based selenocyanate compounds. Steroids 2023, 194, 109217.pl
dc.description.referencesChen, P.; Wang, P.; Song, N.; Li, M. Convergent synthesis and cytotoxic activities of 26-thio- and selenodioscin. Steroids 2013, 78, 959–966.pl
dc.description.referencesCui, J.; Pang, L.; Wei, M.; Gan, C.; Liu, D.; Yuan, H.; Huang, Y. Synthesis and antiproliferative activity of 17-[1',2',3']-selenadiazolylpregnenolone compounds. Steroids 2018, 140, 151–158.pl
dc.description.referencesJastrzebska, I.; Mellea, S.; Salerno, V.; Grzes, P.A.; Siergiejczyk, L.; Niemirowicz-Laskowska, K.; Bucki, R.; Monti, B.; Santi, C. PhSeZnCl in the Synthesis of Steroidal β-Hydroxy-Phenylselenides Having Antibacterial Activity. Int. J. Mol. Sci. 2019, 20, 2121.pl
dc.description.referencesHuang, Y.; Wei, M.; Peng, Z.; Cheng, Y.; Zhang, Y.; Li, J.; Xiao, J.; Gan, C.; Cui, J. Synthesis of estrone selenocyanate Compounds, anti-tumor activity evaluation and Structure-activity relationship analysis. Bioorg. Med. Chem. 2022, 76, 117086.pl
dc.description.referencesGrześ, P.A.; Monti, B.; Wawrusiewicz-Kurylonek, N.; Bagnoli, L.; Sancineto, L.; Jastrzebska, I.; Santi, C. Simple Zn-Mediated Seleno- and Thio-Functionalization of Steroids at C-1 Position. Int. J. Mol. Sci. 2022, 23, 3022.pl
dc.description.referencesIzadi, M.; Ali, T.A.; Pourkarimi, E. Over Fifty Years of Life, Death, and Cannibalism: A Historical Recollection of Apoptosis and Autophagy. Int. J. Mol. Sci. 2021, 22, 12466.pl
dc.description.referencesGöbel, A.; Rauner, M.; Hofbauer, L.C.; Rachner, T.D. Cholesterol and beyond—The role of the mevalonate pathway in cancer biology. Biochim. Biophys. Acta Rev. Cancer 2020, 1873, 188351.pl
dc.description.referencesLepesheva, G.I.; Waterman, M.R. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim. Biophys. Acta Gen. Subj. 2007, 1770, 467–477.pl
dc.description.referencesSaunier, E.; Benelli, C.; Bortoli, S. The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents: Pyruvate dehydrogenase complex in cancer. Int. J. Cancer 2016, 138, 809–817.pl
dc.description.referencesDorstyn, L.; Akey, C.W.; Kumar, S. New insights into apoptosome structure and function. Cell Death Differ. 2018, 25, 1194–1208.pl
dc.description.referencesZou, H.; Henzel, W.J.; Liu, X.; Lutschg, A.; Wang, X. Apaf-1, a Human Protein Homologous to C. elegans CED-4, Participates in Cytochrome c–Dependent Activation of Caspase-3. Cell 1997, 90, 405–413.pl
dc.description.referencesBillen, L.P.; Shamas-Din, A.; Andrews, D.W. Bid: A Bax-like BH3 protein. Oncogene 2008, 27, S93–S104.pl
dc.description.referencesGrzes, P.A.; Sawicka, A.; Niemirowicz-Laskowska, K.; Wielgat, P.; Sawicka, D.; Car, H.; Jastrzebska, I. Metal-promoted synthesis of steroidal ethynyl selenides having anticancer activity. J. Steroid Biochem. Mol. Biol. 2023, 227, 106232.pl
dc.description.referencesCui, J.; Wei, M.; Pang, L.; Gan, C.; Xiao, J.; Shi, H.; Zhan, J.; Liu, Z.; Huang, Y. Synthesis and antiproliferative evaluation of novel steroid-benzisoselenazolone hybrids. Steroids 2019, 152, 108502.pl
dc.description.referencesJuarez, D.; Fruman, D.A. Targeting the Mevalonate Pathway in Cancer. Trends Cancer 2021, 7, 525–540.pl
dc.description.referencesXu, Z.; Huang, L.; Dai, T.; Pei, X.; Xia, L.; Zeng, G.; Ye, M.; Liu, K.; Zeng, F.; Han, W.; et al. SQLE Mediates Metabolic Reprogramming to Promote LN Metastasis in Castration-Resistant Prostate Cancer. OncoTargets Ther. 2021, 14, 4285–4295.pl
dc.description.referencesXu, H.; Zhou, S.; Tang, Q.; Xia, H.; Bi, F. Cholesterol metabolism: New functions and therapeutic approaches in cancer. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188394.pl
dc.description.referencesGe, H.; Zhao, Y.; Shi, X.; Tan, Z.; Chi, X.; He, M.; Jiang, G.; Ji, L.; Li, H. Squalene epoxidase promotes the proliferation and metastasis of lung squamous cell carcinoma cells though extracellular signal-regulated kinase signaling. Thorac. Cancer 2019, 10, 428–436.pl
dc.description.referencesBrown, D.N.; Caffa, I.; Cirmena, G.; Piras, D.; Garuti, A.; Gallo, M.; Alberti, S.; Nencioni, A.; Ballestrero, A.; Zoppoli, G. Squalene epoxidase is a bona fide oncogene by amplification with clinical relevance in breast cancer. Sci. Rep. 2016, 6, 19435.pl
dc.description.referencesZhang, H.-Y.; Li, H.-M.; Yu, Z.; Yu, X.; Guo, K. Expression and significance of squalene epoxidase in squamous lung cancerous tissues and pericarcinoma tissues: Expression of SQLE mRNA and protein. Thorac. Cancer 2014, 5, 275–280.pl
dc.description.referencesMicheau, O.; Tschopp, J. Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes. Cell 2003, 114, 181–190.pl
dc.description.referencesBerghe, T.V.; van Loo, G.; Saelens, X.; van Gurp, M.; Brouckaert, G.; Kalai, M.; Declercq, W.; Vandenabeele, P. Differential Signaling to Apoptotic and Necrotic Cell Death by Fas-associated Death Domain Protein FADD. J. Biol. Chem. 2004, 279, 7925–7933.pl
dc.description.referencesWu, C.-C.; Lee, S.; Malladi, S.; Chen, M.-D.; Mastrandrea, N.J.; Zhang, Z.; Bratton, S.B. The Apaf-1 apoptosome induces formation of caspase-9 homo- and heterodimers with distinct activities. Nat Commun. 2016, 7, 13565.pl
dc.description.referencesBunik, V.I.; Tylicki, A.; Lukashev, N.V. Thiamin diphosphate-dependent enzymes: From enzymology to metabolic regulation, drug design and disease models. FEBS J. 2013, 280, 6412–6442.pl
dc.description.referencesMaliszewski, D.; Demirel, R.; Wróbel, A.; Baradyn, M.; Ratkiewicz, A.; Drozdowska, D. s-Triazine Derivatives Functionalized with Alkylating 2-Chloroethylamine Fragments as Promising Antimicrobial Agents: Inhibition of Bacterial DNA Gyrases, Molecular Docking Studies, and Antibacterial and Antifungal Activity. Pharmaceuticals 2023, 16, 1248.pl
dc.description.referencesWróbel, A.; Baradyn, M.; Ratkiewicz, A.; Drozdowska, D. Synthesis, Biological Activity, and Molecular Dynamics Study of Novel Series of a Trimethoprim Analogs as Multi-Targeted Compounds: Dihydrofolate Reductase (DHFR) Inhibitors and DNA-Binding Agents. Int. J. Mol. Sci. 2021, 22, 3685.pl
dc.description.referencesMahipal, S.; Kya, M.; Xiaoling, M. Effect of dimethyl sulfoxide on in vitro proliferation of skin fibroblast cells. J. Biotech Res. 2017, 8, 78–82.pl
dc.description.referencesTimm, M.; Saaby, L.; Moesby, L.; Hansen, E.W. Considerations regarding use of solvents in in vitro cell based assays. Cytotechnology 2013, 65, 887–894.pl
dc.description.referencesDa Violante, G.; Zerrouk, N.; Richard, I.; Provot, G.; Chaumeil, J.C.; Arnaud, P. Evaluation of the Cytotoxicity Effect of Dimethyl Sulfoxide (DMSO) on Caco2/TC7 Colon Tumor Cell Cultures. Biol. Pharm. Bull. 2002, 25, 1600–1603.pl
dc.description.referencesTrott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461.pl
dc.description.referencesThe PyMOL Molecular Graphics System, Version 2.2.3. Copyright Schrodinger LLC. Available online: https://pymol.org (accessed on 30 October 2021).pl
dc.description.referencesJo, S.; Kim, T.; Im, W. Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations. PLoS ONE 2007, 2, e880.pl
dc.description.referencesJo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865.pl
dc.description.referencesBotet-Carreras, A.; Montero, M.T.; Sot, J.; Domènech, Ò.; Borrell, J.H. Characterization of monolayers and liposomes that mimic lipid composition of HeLa cells. Colloids Surfaces B Biointerfaces 2020, 196, 111288.pl
dc.description.referencesSingh, U.C.; Kollman, P.A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 1984, 5, 129–145.pl
dc.description.referencesHub, J.S.; Winkler, F.K.; Merrick, M.; De Groot, B.L. Potentials of Mean Force and Permeabilities for Carbon Dioxide, Ammonia, and Water Flux across a Rhesus Protein Channel and Lipid Membranes. J. Am. Chem. Soc. 2010, 132, 13251–13263.pl
dc.description.referencesWennberg, C.L.; Van Der Spoel, D.; Hub, J.S. Large Influence of Cholesterol on Solute Partitioning into Lipid Membranes. J. Am. Chem. Soc. 2012, 134, 5351–5361.pl
dc.description.referencesPhillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020, 153, 044130.pl
dc.description.referencesHumphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.pl
dc.description.volume28pl
dc.description.issue22pl
dc.description.firstpage7528pl
dc.identifier.citation2Moleculespl
dc.identifier.orcid0000-0003-3268-3515-
dc.identifier.orcid0000-0002-1087-8154-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0003-1657-1871-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
Występuje w kolekcji(ach):Artykuły naukowe (SzkDokt)
Artykuły naukowe (WBiol)
Artykuły naukowe (WChem)

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
I_Jastrzebska_N_Wawrusiewicz_Kurylonek_at_al_New_Steroidal_Selenides.pdf9,97 MBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons