REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/17809
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorSchwarzweller, Christoph-
dc.date.accessioned2025-01-10T12:08:08Z-
dc.date.available2025-01-10T12:08:08Z-
dc.date.issued2024-
dc.identifier.citationFormalized Mathematics, Volume 32, Issue 1, Pages 289–302pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/17809-
dc.description.abstractWe continue the formalization of field theory in Mizar. Here we prove existence and uniqueness of finite fields by constructing the splitting field of the polynomial X (pⁿ) −X over the prime field of a field with characteristic p. We also define the Frobenius morphism and show that the automorphisms of a field with pⁿ elements are exactly the powers 0, . . . , n − 1 of the Frobenius morphism, that is the automorphism group is generated by the Frobenius morphism.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectfinite fieldpl
dc.subjectsplitting fieldpl
dc.subjectGalois fieldpl
dc.titleFinite Fieldspl
dc.typeArticlepl
dc.rights.holder© 2024 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2024-0024-
dc.description.AffiliationInstitute of Informatics, University of Gdańsk, Polandpl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesAdam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. Equality in computer proof-assistants. In Ganzha, Maria and Maciaszek, Leszek and Paprzycki, Marcin, editor, Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, volume 5 of ACSIS-Annals of Computer Science and Information Systems, pages 45–54. IEEE, 2015. doi:10.15439/2015F229.pl
dc.description.referencesAdam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of Annals of Computer Science and Information Systems, pages 363–371, 2016. doi:10.15439/2016F520.pl
dc.description.referencesNathan Jacobson. Basic Algebra I. Dover Books on Mathematics, 1985.pl
dc.description.referencesEmin Karayel. Finite fields. Archive of Formal Proofs, 2022. https://isa-afp.org/entries/Finite_Fields.html, Formal proof development.pl
dc.description.referencesArtur Korniłowicz. Flexary connectives in Mizar. Computer Languages, Systems & Structures, 44:238–250, December 2015. doi:10.1016/j.cl.2015.07.002.pl
dc.description.referencesArtur Korniłowicz and Christoph Schwarzweller. The first isomorphism theorem and other properties of rings. Formalized Mathematics, 22(4):291–301, 2014. doi:10.2478/forma-2014-0029.pl
dc.description.referencesSerge Lang. Algebra (Revised Third Edition). Springer Verlag, 2002.pl
dc.description.referencesKnut Radbruch. Algebra I. Lecture Notes, University of Kaiserslautern, Germany, 1991.pl
dc.description.referencesChristoph Schwarzweller. Existence and uniqueness of algebraic closures. Formalized Mathematics, 30(4):281–294, 2022. doi:10.2478/forma-2022-0022.pl
dc.description.referencesChristoph Schwarzweller. Normal extensions. Formalized Mathematics, 31(1):121–130, 2023. doi:10.2478/forma-2023-0011.pl
dc.description.referencesChristoph Schwarzweller and Artur Korniłowicz. Characteristic of rings. Prime fields. Formalized Mathematics, 23(4):333–349, 2015. doi:10.1515/forma-2015-0027.pl
dc.identifier.eissn1898-9934-
dc.description.volume32pl
dc.description.issue1pl
dc.description.firstpage289pl
dc.description.lastpage302pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0001-9587-8737-
Występuje w kolekcji(ach):Formalized Mathematics, 2024, Volume 32, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
Finite-Fields.pdf310,3 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons