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Summary.We continue the formalization of field theory in Mizar. Here we
prove existence and uniqueness of finite fields by constructing the splitting field of
the polynomial X(p

n)−X over the prime field of a field with characteristic p. We
also define the Frobenius morphism and show that the automorphisms of a field
with pn elements are exactly the powers 0, . . . , n− 1 of the Frobenius morphism,
that is the automorphism group is generated by the Frobenius morphism.
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Introduction

In this paper we continue the formalization of field theory (see, e.g., [11], [12])
proving existence and uniqueness of finite fields [9, 10, 5] and also establishing
the automorphisms of a finite field using the Mizar formalism [1, 2, 7, 4, 3]
(compare [6] for Isabelle/HOL formalization).

In the first three sections we provide some notation and lemmas needed
later. First we consider function iterations fn where n is a natural number. We
prove some standard properties, amongst others that fn is an automorphism,
if f is. Then we deal with subfields: we say that a subset S of a given field
F induces a subfield of F , if S contains 0 and 1 and is closed with respect to
the field operations. It is well known that in this case S with the restricted
field operations itself is a field; we construct this field by defining a functor
InducedSubfield(S). The third section contains a number of technical lemmas,
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but also the proof that a finite extension of a finite field is both again finite and
simple.

In the fourth section we briefly introduce reduced rings, that is rings in which
0 is the only nilpotent element. Then we define the Frobenius morphism of a
ring R, which is injective, if R is nilpotent. We also prove that the Frobenius
morphism of Z/p is trivial and that a field F is perfect if and only if its Frobenius
morphism is bijective. The next section is devoted to the polynomials Xn −X.
The most important properties we prove are that a is a root of Xn −X if and
only if an = a and that the derivation of X(p

n)−X in a field with characteristic
p is −1, so that in this case X(p

n) − X is separable. Section 6 presents basic
properties of prime fields, for example that if F is a field with pn elements, then
an element a is in the prime field of F if and only if ap = a. The main result is
that a finite field with pn elements is a finite simple extension of degree n over
its prime field.

Section seven is the core of the article, here we show existence and uniqueness
of finite fields. If F is a field with characteristic p, then the splitting field of
X(p

n)−X over F ’s prime field is a field with pn elements: the roots of X(p
n)−X

induce a field which – because X(p
n) − X is separable – contains exactly pn

elements. Because two splitting fields of X(p
n) − X are isomorphic, this also

implies that two finite fields with the same number of elements are isomorphic.
In eighth section we prove that the automorphisms of a field F with pn elements
are exactly the powers 0, . . . , n−1 of F ’s Frobenius morphism. To do so we also
showed that in F (a) where a is algebraic an F -fixing automorphism is uniquely
determined by a, that is from f1(a) = f2(a) already follows f1 = f2. This implies
that in this case the set of automorphisms is finite. In the last section we define
Galois fields over q where q = pn is a prime power. Here we assume that the
finite fields contain Z/p as a subfield, so that the prime field of a finite field
now is Z/p. Though this section hence is just a repetition of prior results for a
special case, we think that in this form the results about finite fields are easier
reusable in further developments: the results stated as theorems so far, here can
be expressed using clusters.

1. Iteration of Functions

Let K, L be non empty 1-sorted structures. Let us observe that there exists
a sequence which is (LK)-valued.

Let F be an (LK)-valued sequence and n be a natural number. One can
verify that the functor F (n) yields a function from K into L. Let F be a field.
Let us observe that there exists a vector space over F which is trivial.
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The scheme RecExF deals with a non empty 1-sorted structure D and a func-
tion F from D into D and a ternary predicate P and states that

(Sch. 1) There exists a (DD)-valued sequence f such that f(0) = F and for every
natural number n, P[n, f(n), f(n+ 1)]

provided

• for every natural number n and for every function g1 from D into D, there
exists a function g2 from D into D such that P[n, g1, g2].

Let L be a non empty 1-sorted structure, f be a function from L into L,
and n be a natural number. The functor fn yielding a function from L into L
is defined by

(Def. 1) there exists an (LL)-valued sequence F such that it = F (n) and F (0) =
idL and for every natural number i, F (i+ 1) = F (i) · f .

One can verify that f1 reduces to f . Now we state the propositions:

(1) Let us consider a non empty 1-sorted structure L, and a function f from
L into L. Then

(i) f0 = idL, and

(ii) f1 = f , and

(iii) f2 = f · f .

(2) Let us consider a non empty 1-sorted structure L, a function f from L

into L, and a natural number n. Then fn+1 = fn · f = f · (fn).
Proof: Define P[natural number] ≡ f$1+1 = f$1 · f . For every natural
number k, P[k]. Define P[natural number] ≡ f$1 · f = f · (f$1). f0 · f =
idR · f . For every natural number k, P[k]. �

Let L be a non empty 1-sorted structure and n be a natural number. One
can check that (idL)n reduces to idL.

Let us consider a non empty 1-sorted structure L, a function f from L into
L, and natural numbers n, m. Now we state the propositions:

(3) fn+m = fn · (fm).
Proof: Define P[natural number] ≡ fn+$1 = fn · (f$1). For every natural
number k, P[k]. �

(4) fn·m = (fn)m.
Proof: Define P[natural number] ≡ fn·$1 = (fn)$1 . fn·0 = idL. For every
natural number k, P[k]. �

(5) Let us consider a non empty 1-sorted structure L, a bijective function f
from L into L, and natural numbers n, m. Then fn+1 = fm+1 if and only
if fn = fm. The theorem is a consequence of (2).
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(6) Let us consider a non empty 1-sorted structure L, a bijective function f
from L into L, and natural numbers n, m, k. If fn = fm and k = n−m,
then fk = f0.
Proof: Define P[natural number] ≡ for every natural numbers n, k such
that fn = f$1 and k = n− $1 holds fk = f0. For every natural number k,
P[k]. �

Let F be a field. Let us observe that there exists a function from F into F
which is isomorphism.

Let R be a ring and f , g be isomorphism functions from R into R. One can
verify that f · g is isomorphism as a function from R into R.

Let f be an isomorphism function from R into R and n be a natural number.
One can verify that fn is isomorphism as a function from R into R and f−1 is
isomorphism as a function from R into R.

2. Induced Subfields

Let F be a field and S be a subset of F . We say that S is inducing subfield
if and only if

(Def. 2) 0F , 1F ∈ S and for every elements a, b of F such that a, b ∈ S holds
a+ b, a · b, −a ∈ S and for every non zero element a of F such that a ∈ S
holds a−1 ∈ S.

One can verify that there exists a subset of F which is inducing subfield and
every inducing subfield subset of F is non empty.

Let S be an inducing subfield subset of F . The functor InducedSubfield(S)
yielding a strict, non empty double loop structure is defined by

(Def. 3) the carrier of it = S and the addition of it = (the addition of F ) � S
and the multiplication of it = (the multiplication of F ) � S and 0it = 0F
and 1it = 1F .

One can check that InducedSubfield(S) is non degenerated and InducedSub-
field(S) is Abelian, add-associative, right zeroed, and right complementable and
InducedSubfield(S) is commutative, associative, well unital, distributive, and
almost left invertible.

Let us note that the functor InducedSubfield(S) yields a strict subfield of F .
Let E be a field and F be a subfield of E. Let us note that the carrier of F is
inducing subfield as a subset of E.

Let F be a field. One can verify that the carrier of F is inducing subfield as
a subset of F .
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3. Some More Preliminaries

Let R1 be a ring, R2 be an R1-isomorphic ring, R3 be an R2-isomorphic ring,
f be an isomorphism between R1 and R2, and g be an isomorphism between R2
and R3. Note that g · f is isomorphism as a function from R1 into R3.

Let F be a field, E be an extension of F , and f be an additive function from
E into E. One can verify that f�(the carrier of F ) is additive as a function from
F into F .

Let f be a multiplicative function from E into E. Let us observe that
f�(the carrier of F ) is multiplicative as a function from F into F .

Let f be a unity-preserving function from E into E. Observe that f�(the car-
rier of F ) is unity-preserving as a function from F into F .

Let n, m be natural numbers. We say that m is n-power if and only if

(Def. 4) there exists a non zero natural number l such that m = nl.

Let n be a natural number and l be a non zero natural number. Note that
nl is n-power and there exists a natural number which is n-power.

A power of n is an n-power natural number. Let n be a non zero natural
number. Observe that every power of n is non zero.

Let n be a non trivial natural number. Let us observe that every power of n
is non trivial. Now we state the propositions:

(7) Let us consider prime numbers p1, p2, and natural numbers n1, n2. Sup-
pose (n1 6= 0 or n2 6= 0) and p1

n1 = p2
n2 . Then

(i) p1 = p2, and

(ii) n1 = n2.

(8) Let us consider a field F , a non zero element a of F , and a natural
number n. Then (a−1)n = an−1.

Proof: Define P[natural number] ≡ (a−1)$1 = a$1−1. For every natural
number k, P[k]. �

(9) Let us consider a ring R, an R-homomorphic ring S, a multiplicative,
unity-preserving function f from R into S, an element a of R, and a natural
number n. Then f(an) = f(a)n.
Proof: Define P[natural number] ≡ f(a$1) = f(a)$1 . For every natural
number k, P[k]. �

Let R be a ring and p be a polynomial over R. Note that −−p reduces to p.
Now we state the propositions:

(10) Let us consider a ringR, and polynomials p1, p2 overR. Then p1∗(−p2) =
−p1 ∗ p2.
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(11) Let us consider an integral domain R, a domain ring extension S of
R, and a non zero element p of the carrier of Polynom-RingR. Then
Roots(S, p) ¬ deg(p).

(12) Let us consider a field F , an extension E of F , an element a of E, and
a natural number n. Then an ∈ the carrier of FAdj(F, {a}).
Proof: Define P[natural number] ≡ a$1 ∈ the carrier of FAdj(F, {a}).
For every natural number n, P[n]. �

(13) Let us consider a field F , an extension E of F , an F-algebraic element
a of E, and an F -fixing automorphism f of FAdj(F, {a}). Then f(a) ∈
Roots(FAdj(F, {a}),MinPoly(a, F )).

Let us consider a field F and extensions E1, E2 of F . Now we state the
propositions:

(14) If E1 ≈ E2, then every automorphism of E1 is an automorphism of E2.

(15) Suppose E1 ≈ E2. Then the set of all f where f is an automorphism of
E1 = the set of all f where f is an automorphism of E2. The theorem is
a consequence of (14).

(16) Let us consider a field F , an extension E of F , an F-algebraic element
a of E, and F -fixing automorphisms f , g of FAdj(F, {a}). If f(a) = g(a),
then f = g.
Proof: Define P[natural number] ≡ for every polynomial p over F such
that deg(p) = $1 holds f(ExtEval(p, a)) = g(ExtEval(p, a)). For every
natural number k, P[k]. �

Let us consider a field F , an extension E of F , and an F-algebraic element
a of E. Now we state the propositions:

(17) the set of all f where f is an F -fixing automorphism of FAdj(F, {a}) is
finite.
Proof: Set M = the set of all f where f is an F -fixing automorphism of
FAdj(F, {a}). Set R = Roots(FAdj(F, {a}),MinPoly(a, F )). Define P[ob-
ject, object] ≡ there exists an F -fixing automorphism g of FAdj(F, {a})
such that $1 = g and $2 = g(a). Consider h being a function from M into
R such that for every object o such that o ∈M holds P[o, h(o)]. �

(18) the set of all f where f is an F -fixing automorphism of FAdj(F, {a}) ⊆
Roots(FAdj(F, {a}),MinPoly(a, F )).
Proof: Set M = the set of all f where f is an F -fixing automorphism of
FAdj(F, {a}). Set R = Roots(FAdj(F, {a}),MinPoly(a, F )). Define P[ob-
ject, object] ≡ there exists an F -fixing automorphism g of FAdj(F, {a})
such that $1 = g and $2 = g(a). Consider h being a function from M into
R such that for every object o such that o ∈M holds P[o, h(o)]. �
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(19) Let us consider a field F , an extension E of F , and a non constant

element p of the carrier of Polynom-RingF . Then Roots(E, p) = deg(p)
if and only if p splits in E and p is separable.

Let F be a finite field. One can verify that every subfield of F is finite.
Let F be a field and K be an extension of PrimeFieldF . Note that there

exists an extension of PrimeFieldF which is K-extending.
Let F be a finite field. We introduce the notation orderF as a synonym of

F .
Note that orderF is natural and orderF is non trivial and every F -finite

extension of F is finite and every F -finite extension of F is F -simple.

4. Reduced Rings and Frobenius Morphism

Let R be a ring. We say that R is reduced if and only if

(Def. 5) for every nilpotent element a of R, a = 0R.

Let R be a non degenerated, commutative ring. One can verify that every
element of R which is nilpotent is also non unital. Now we state the proposition:

(20) Let us consider a non degenerated, commutative ring R. Then R is re-
duced if and only if nilrad(R) = {0R}.

One can verify that every integral domain is reduced.
Let R be an integral domain. One can verify that every non zero element of

R is non nilpotent.
Let R be a ring. The functor FrobeniusMorphism(R) yielding a function

from R into R is defined by

(Def. 6) for every element a of R, it(a) = achar(R).

We introduce the notation Frob(R) as a synonym of FrobeniusMorphism(R).
Let p be a prime number and R be a commutative ring with characteristic p.

Let us observe that Frob(R) is additive, multiplicative, and unity-preserving.
Now we state the propositions:

(21) Let us consider a natural number n, and a ring R with characteristic n.
Then ker Frob(R) = {a, where a is an element of R : an = 0R}.

(22) Let us consider a non degenerated, commutative ring R.
Then ker Frob(R) ⊆ nilrad(R). The theorem is a consequence of (21).

(23) Let us consider a ring R with characteristic 0.
Then Frob(R) = (the carrier of R) 7−→ 1R.

(24) Let us consider a prime number p. Then Z/p = p.

(25) Let us consider a prime number p, and an element a of Z/p. Then ap = a.
The theorem is a consequence of (24).
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(26) Let us consider a prime number p. Then Frob(Z/p) = idZ/p. The theorem
is a consequence of (25).

(27) Let us consider a prime number p, a non zero natural number n, and
a field F . If F = pn, then char(F ) = p. The theorem is a consequence of
(7).

(28) Let us consider a prime number p, a non zero natural number n, and
a field F . Suppose F = pn. Let us consider an element a of F . Then
ap
n

= a.

Let p be a prime number and R be a reduced, commutative ring with cha-
racteristic p. One can verify that Frob(R) is one-to-one.

Let F be a finite field. Note that Frob(F ) is onto. Now we state the propo-
sition:

(29) Let us consider a prime number p, and a field F with characteristic p.
Then F is perfect if and only if Frob(F ) is an automorphism of F .

5. The Polynomial Xn −X

Let R be a unital, non empty double loop structure and n be a non trivial
natural number. The functor Xn−R yielding a sequence of R is defined by the
term

(Def. 7) 0.R+·[1 7−→ −1R, n 7−→ 1R].

One can check that Xn −R is finite-Support.
Let R be a non degenerated ring. One can verify that Xn−R is non constant

and monic.
One can verify that the functor Xn − R yields a non constant element of

the carrier of Polynom-RingR. Now we state the proposition:

(30) Let us consider a unital, non degenerated double loop structure R, an ele-
ment a of R, and a non trivial natural number n. Then

(i) (Xn −R)(1) = −1R, and

(ii) (Xn −R)(n) = 1R, and

(iii) for every natural number m such that m 6= 1 and m 6= n holds
(Xn −R)(m) = 0R.

Let us consider a unital, non degenerated double loop structure R and a non
trivial natural number n. Now we state the propositions:

(31) deg(Xn −R) = n.

(32) LCXn −R = 1R.
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(33) Let us consider a non degenerated ring R, a non trivial natural number
n, and an element a of R. Then eval(Xn −R, a) = an − a.
Proof: Set q = Xn−R. Consider F being a finite sequence of elements of
R such that eval(q, x) =

∑
F and lenF = len q and for every element j of

N such that j ∈ domF holds F (j) = q(j−′ 1) ·powerR(x, j−′ 1). Consider
f1 being a sequence of the carrier of R such that

∑
F = f1(lenF ) and

f1(0) = 0R and for every natural number j and for every element v of R
such that j < lenF and v = F (j + 1) holds f1(j + 1) = f1(j) + v. Define
P[element of N] ≡ $1 = 0 and f1($1) = 0R or $1 = 1 and f1($1) = 0R or
1 < $1 < lenF and f1($1) = −x or $1 = lenF and f1($1) = xn − x. For
every element j of N such that 0 ¬ j ¬ lenF holds P[j]. �

(34) Let us consider a unital, non degenerated ring R, a non trivial natural
number n, and an element a of R. Then a is a root of Xn −R if and only
if an = a. The theorem is a consequence of (33).

(35) Let us consider a prime number p, a non zero natural number n, and
a field F with characteristic p. Suppose F = pn. Let us consider an element
a of F . Then eval(Xpn −F, a) = 0F . The theorem is a consequence of (28)
and (34).

(36) Let us consider a non degenerated ring R, a ring extension S of R, a non
trivial natural number n, and an element a of S. Then ExtEval(Xn −
R, a) = an − a.
Proof: Set q = Xn−R. Consider F being a finite sequence of elements of
S such that ExtEval(q, x) =

∑
F and lenF = len q and for every element

j of N such that j ∈ domF holds F (j) = q(j−′ 1)(∈ S) ·powerS(x, j−′ 1).
Consider f1 being a sequence of the carrier of S such that

∑
F = f1(lenF )

and f1(0) = 0S and for every natural number j and for every element v of
S such that j < lenF and v = F (j+ 1) holds f1(j+ 1) = f1(j) +v. Define
P[element of N] ≡ $1 = 0 and f1($1) = 0S or $1 = 1 and f1($1) = 0S or
1 < $1 < lenF and f1($1) = −x or $1 = lenF and f1($1) = xn − x. For
every element j of N such that 0 ¬ j ¬ lenF holds P[j]. �

(37) Let us consider a unital, non degenerated ring R, a ring extension S of
R, a non trivial natural number n, and an element a of S. Then a is a
root of Xn − R in S if and only if an = a. The theorem is a consequence
of (36).

(38) Let us consider a prime number p, a commutative ring R with charac-
teristic p, and a non zero natural number n. Then {m · (1R), where m is
a natural number : m < p} ⊆ Roots(Xpn −R).
Proof: Define P[natural number] ≡ $1 · (1R) ∈ Roots(Xpn −R). 0 · (1R)
is a root of Xpn −R. Reconsider p1 = p− 1 as an element of N. For every



298 christoph schwarzweller

element k of N such that 0 ¬ k ¬ p1 holds P[k]. �

Let us consider a prime number p, a non zero natural number n, and a field
F with characteristic p. Now we state the propositions:

(39) If F = pn, then Roots(Xpn − F ) = the carrier of F . The theorem is
a consequence of (35).

(40) (Deriv(F ))(Xpn − F ) = −1.F .

(41) Let us consider a non trivial natural number n, a ring R, and a ring
extension S of R. Then Xn −R = Xn − S.

Let p be a prime number, n be a non zero natural number, and F be a field
with characteristic p. Note that Xpn −F is separable as a non constant element
of the carrier of Polynom-RingF .

Let F be a finite field. One can check that X(orderF ) − F is separable as
a non constant element of the carrier of Polynom-RingF .

6. On Prime Fields of Finite Fields

Let us consider a finite field F . Now we state the propositions:

(42) PrimeFieldF = char(F ).

(43) Roots(X(char(F )) − F ) = the carrier of PrimeFieldF .

Now we state the propositions:

(44) Let us consider a prime number p, a non zero natural number n, and
a field F . Suppose F = pn. Then PrimeFieldF = p. The theorem is
a consequence of (27) and (24).

(45) Let us consider a finite field F , and an element a of F .
Then (Frob(F ))(a) = a if and only if a ∈ PrimeFieldF .

(46) Let us consider a prime number p, a non zero natural number n, and
a field F . Suppose F = pn. Let us consider an element a of F . Then
a ∈ PrimeFieldF if and only if ap = a. The theorem is a consequence of
(27).

(47) Let us consider a finite field F , an automorphism f of F , and an element
a of F . Then f(a) ∈ PrimeFieldF if and only if a ∈ PrimeFieldF . The
theorem is a consequence of (46) and (9).

(48) Let us consider a prime field F , and an automorphism f of F . Then
f = idF .

(49) Let us consider a finite field F , an automorphism f of F , and an element
a of PrimeFieldF . Then f(a) = a. The theorem is a consequence of (47)
and (48).
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(50) Let us consider a prime number p, a non zero natural number n, a field
F , and an extension E of F . Suppose E = pn and F ≈ PrimeFieldE.
Then deg(E,F ) = n. The theorem is a consequence of (44) and (7).

(51) Every finite field is an (PrimeFieldF )-finite extension of PrimeFieldF .

(52) Every finite field is an (PrimeFieldF )-simple extension of PrimeFieldF .

7. Existence and Uniqueness of Finite Fields

Let p be a prime number, n be a non zero natural number, and F be a field
with characteristic p. Note that Roots(Xpn − F ) is inducing subfield.

Let E be a splitting field of Xpn − (PrimeFieldF ). One can verify that
Roots(E,Xpn − (PrimeFieldF )) is inducing subfield.

Let us consider a prime number p, a non zero natural number n, a field F

with characteristic p, and a splitting field E of Xpn − (PrimeFieldF ). Now we
state the propositions:

(53) Roots(E,Xpn − (PrimeFieldF )) = pn. The theorem is a consequence of
(19).

(54) E ≈ InducedSubfield(Roots(E,Xpn − (PrimeFieldF ))).

(55) Let us consider a prime number p, a non zero natural number n, and
a field F . Suppose F = pn.
Then F is a splitting field of Xpn − (PrimeFieldF ). The theorem is a con-
sequence of (27) and (19).

(56) Let us consider a prime number p, a non zero natural number n, and
a finite field F . Suppose F = pn. Then Xpn − F is a product of linear
polynomials of F and Ωα, where α is the carrier of F . The theorem is
a consequence of (7), (55), (41), and (39).

(57) Let us consider a prime number p, and a non zero natural number n.
Then there exists a finite field F such that

(i) char(F ) = p, and

(ii) orderF = pn.

The theorem is a consequence of (53).

(58) Let us consider a finite field F . Then there exists a prime number p
and there exists a non zero natural number n such that char(F ) = p and
orderF = pn.

(59) Let us consider finite fields F1, F2. If orderF1 = orderF2, then F1 and
F2 are isomorphic.
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Proof: Consider p1 being a prime number, n1 being a non zero natural
number such that char(F1) = p1 and orderF1 = p1

n1 . Consider p2 being
a prime number, n2 being a non zero natural number such that char(F2) =
p2 and orderF2 = p2

n2 . Set P1 = PrimeFieldF1. Set P2 = PrimeFieldF2.
p1 = p2 and n1 = n2. Consider i being a function from P1 into P2 such
that i inherits ring isomorphism. Reconsider E1 = F1 as a splitting field
of Xp1n1 − P1. Set E2 = the splitting field of (PolyHom(i))(Xp1n1 − P1).
Consider f being a function from E1 into E2 such that f is i-extending
and isomorphism. (PolyHom(i))(Xp1n1 −P1) = Xp2n2 −P2 by [8, (7), (6)].
Reconsider E3 = F2 as a splitting field of Xp2n2 − P2. Consider g being
a function from E2 into E3 such that g is isomorphism. �

(60) Every finite field is a (PrimeFieldF )-normal, (PrimeFieldF )-separable
extension of PrimeFieldF . The theorem is a consequence of (55).

8. Automorphisms of Finite Fields

Let F be a finite field and n be a natural number. Note that (Frob(F ))n is
isomorphism and Frob(F ) is isomorphism. Now we state the propositions:

(61) Let us consider a prime number p, a non zero natural number n, and
a field F . Suppose F = pn. Then (Frob(F ))n = idF . The theorem is
a consequence of (27) and (28).

(62) Let us consider a prime number p, a non zero natural number n, and
a field F . Suppose F = pn. Let us consider a natural number k. If 0 <
k ¬ n− 1, then (Frob(F ))k 6= idF . The theorem is a consequence of (27),
(34), and (7).

(63) Let us consider a prime number p, a non zero natural number n, and
a field F . Suppose F = pn. Let us consider natural numbers m, k. Suppose
0 ¬ m ¬ n − 1 and 0 ¬ k ¬ n − 1 and m 6= k. Then (Frob(F ))m 6=
(Frob(F ))k. The theorem is a consequence of (27), (6), (1), and (62).

Let us consider a prime number p, a non zero natural number n, and a field
F . Now we state the propositions:

(64) Suppose F = pn.

Then {(Frob(F ))m, where m is a natural number : 0 ¬ m ¬ n− 1} = n.
Proof: Define P[object, object] ≡ there exists an element x of Seg n and
there exists an element y of N such that $1 = x and y = x − 1 and
$2 = (Frob(F ))y. Consider f being a function such that dom f = Seg n
and for every object x such that x ∈ Seg n holds P[x, f(x)]. �
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(65) Suppose F = pn. Then the set of all f where f is an automorphism of
F = {(Frob(F ))m, where m is a natural number : 0 ¬ m ¬ n− 1}.
Proof: Set P = PrimeFieldF . Reconsider E = F as an P -finite extension
of P . Consider a being an element of E such that E ≈ FAdj(P, {a}). Set
M= the set of all f where f is a P -fixing automorphism of FAdj(P, {a}).
{(Frob(F ))m, where m is a natural number : 0 ¬ m ¬ n− 1} = n. Recon-
sider K = {(Frob(F ))m, where m is a natural number : 0 ¬ m ¬ n − 1}
as a finite set. Roots(FAdj(P, {a}),MinPoly(a, P )) ¬ deg(MinPoly(a, P )).
M = the set of all f where f is an automorphism of FAdj(P, {a}) by [13,
(94)], (49). K ⊆M . �

9. Galois Fields – as Extensions of Z/p

Let p be a prime number and q be a power of p.
A Galois field of q is a finite field defined by

(Def. 8) order it = q and Z/p is a subfield of it.

A Galois field of p is a Galois field of p1. Let q be a power of p. Observe
that there exists a Galois field of q which is strict and every Galois field of q is
(Z/p)-extending and has characteristic p. Now we state the propositions:

(66) Let us consider a prime number p. Then Z/p is a Galois field of p. The
theorem is a consequence of (24).

(67) Let us consider a prime number p, and a Galois field F of p. Then
F ≈ Z/p. The theorem is a consequence of (24).

(68) Let us consider a prime number p, and a strict Galois field F of p. Then
F = Z/p.

(69) Let us consider a field F . Then F is finite if and only if there exists
a prime number p and there exists a non zero natural number n and
there exists a Galois field G of pn such that F and G are isomorphic. The
theorem is a consequence of (59).

(70) Let us consider a prime number p, a non zero natural number n, and
a Galois field F of pn. Then PrimeFieldF = Z/p.

(71) Let us consider a prime number p, and a non zero natural number n.
Then every Galois field of pn is a splitting field ofXpn−(Z/p). The theorem
is a consequence of (70) and (55).

(72) Let us consider a prime number p, a non zero natural number n, and
Galois fields F1, F2 of pn. Then F1 and F2 are isomorphic over Z/p. The
theorem is a consequence of (71).
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(73) Let us consider a prime number p, a non zero natural number n, and
a Galois field F of pn. Then deg(F,Z/p) = n. The theorem is a consequence
of (24) and (7).

Let p be a prime number and n be a non zero natural number. One can
check that every Galois field of pn is (Z/p)-finite and (Z/p)-simple.

Let F be a Galois field of pn and m be a natural number. One can verify
that (Frob(F ))m is (Z/p)-fixing and every automorphism of F is (Z/p)-fixing
and every Galois field of pn is (Z/p)-normal and (Z/p)-separable.
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