REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/17800
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorZiobro, Rafał-
dc.date.accessioned2025-01-10T10:06:52Z-
dc.date.available2025-01-10T10:06:52Z-
dc.date.issued2024-
dc.identifier.citationFormalized Mathematics, Volume 32, Issue 1, Pages 235–245pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/17800-
dc.description.abstractIn this article we construct formally the Pascal’s triangle using Mizar proof assistant. Using the same techniques, we show some similar constructions based on integer sequences. We also prove Lucas’s theorem providing useful registrations of clusters to enable more automation in calculations.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectarithmetic trianglepl
dc.subjectbinomial coefficientpl
dc.subjectLucas theorempl
dc.titlePascal’s Triangle and Lucas’s Theorempl
dc.typeArticlepl
dc.rights.holder© 2024 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2024-0020-
dc.description.AffiliationDepartment of Carbohydrate Technology and Cereal Processing, University of Agriculture, Kraków, Polandpl
dc.description.referencesAlif Anggoro, Eddy Liu, and Angus Tulloch. The Rascal triangle. The College Mathematics Journal, 41(5):393–395, 2010. doi:10.4169/074683410x521991.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesAlexis Bès. On Pascal triangles modulo a prime power. Annals of Pure and Applied Logic, 89(1):17–35, 1997. doi:10.1016/s0168-0072(97)85376-6.pl
dc.description.referencesChelsea Edmonds. Formalising combinatorial structures and proof techniques in Isabelle/HOL. Apollo – University of Cambridge Repository, 2023. doi:10.17863/CAM.1088.pl
dc.description.referencesChelsea Edmonds. Lucas’s theorem. Archive of Formal Proofs, 2020. https://isa-afp.org/entries/Lucas_Theorem.html, Formal proof development.pl
dc.description.referencesN.J. Fine. Binomial coefficients modulo a prime. The American Mathematical Monthly, 54(10):589–592, 1947. doi:10.2307/2304500.pl
dc.description.referencesAdam Grabowski. Elementary number theory problems. Part XII – primes in arithmetic progression. Formalized Mathematics, 31(1):277–286, 2023. doi:10.2478/forma-2023-0022.pl
dc.description.referencesAndrew Granville. Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. In Jonathan M. Borwein, editor, Organic Mathematics: Proceedings of the Organic Mathematics Workshop, volume 20 of CMS conference proceedings, pages 253–276, Burnaby, BC, 1997. American Mathematical Soc. ISBN 9780821806685.pl
dc.description.referencesArtur Korniłowicz. Elementary number theory problems. Part IX. Formalized Mathematics, 31(1):161–169, 2023. doi:10.2478/forma-2023-0015.pl
dc.description.referencesWłodzimierz Lapis. Dystynktywność ciągów. Investigationes Linguisticae, 25:58–71, 2012.doi:10.14746/il.2012.25.4.pl
dc.description.referencesAdam Naumowicz. Dataset description: Formalization of elementary number theory in Mizar. In Christoph Benzmüller and Bruce R. Miller, editors, Intelligent Computer Mathematics – 13th International Conference, CICM 2020, Bertinoro, Italy, July 26–31, 2020, Proceedings, volume 12236 of Lecture Notes in Computer Science, pages 303–308. Springer, 2020. doi:10.1007/978-3-030-53518-6_22.pl
dc.description.referencesKarol Pąk. Prime representing polynomial with 10 unknowns. Formalized Mathematics, 30(4):255–279, 2022. doi:10.2478/forma-2022-0021.pl
dc.description.referencesChristoph Schwarzweller. Modular integer arithmetic. Formalized Mathematics, 16(3): 247–252, 2008. doi:10.2478/v10037-008-0029-8.pl
dc.description.referencesAntoni Smoluk. Statystyka w XXI wieku. Przyszłość statystyki. Didactics of Mathematics, 14(18):59–70, 2017. doi:10.15611/dm.2017.14.06.pl
dc.identifier.eissn1898-9934-
dc.description.volume32pl
dc.description.issue1pl
dc.description.firstpage235pl
dc.description.lastpage245pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0001-9681-4380-
Występuje w kolekcji(ach):Formalized Mathematics, 2024, Volume 32, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
Pascals-Triangle-and-Lucass-Theorem.pdf283,08 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons