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Summary. In this article we construct formally the Pascal’s triangle using
Mizar proof assistant. Using the same techniques, we show some similar construc-
tions based on integer sequences. We also prove Lucas’s theorem providing useful
registrations of clusters to enable more automation in calculations.
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INTRODUCTION

The use of Pascal’s triangle as an object of mathematical studies has occur-
red much earlier than its name may suggest, but still gathers a lot of interest
due to its relevance to scientific studies and teaching [11], [I5]. This work il-
lustrates the creation of the Triangle in the Mizar system [2], [3], using finite
sequences, and shows similar constructions developed more recently [1]. Addi-
tionally it provides some simple lemmas on the divisibility of factorials (Sect. 2)
and binomial coefficients [7] (Sect. 3), and the Lucas’s theorem [9], in the form
sometimes referred to as Anton’s Lemma [4] (Sect. 4), relatively recently forma-
lized in Isabelle/HOL [6], [5]. Some of the properties are expressed in the form of
registrations of clusters to simplify calculations within the Mizar Mathematical
Library. This could enhance the encoding of elementary number theory in Mizar
[10], [8] as described in [12] or even more complex topics there [13].
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1. PRELIMINARIES

Now we state the propositions:

(1) Let us consider non zero natural numbers k, n. If £ mod n = 0, then
k—1modn=mn-—1.

(2) Let us consider a natural number k, and a non zero natural number n.
If K+ 1 mod n = 0, then k + 1divn = (kdivn) + 1. The theorem is
a consequence of (1).

Let @ be a non zero natural number. Let us observe that a — 1 mod a
reduces to a — 1. Let us consider non zero natural numbers n, k. Now we state
the propositions:

(3) If n mod k> 0, then n — 1 mod k = (n mod k) — 1.
(4) Ifnmod k > 0, then ndivk = n—1div k. The theorem is a consequence

of (3).

2. PROPERTIES OF FACTORIAL

Let a be a trivial natural number. Let us observe that a! is trivial and non
Z€ro.
One can check that 1! reduces to 1 and 2! reduces to 2. Let a, b be natural
numbers. Let us note that (a + b)! mod b is zero.
Let us consider natural numbers n, k. Now we state the propositions:
(5) n!|(n+ k).
PROOF: Define Plnatural number] = n! | (n + $;)!. For every natural
number m such that P[m] holds P[m + 1]. For every natural number c,
Plc]. O
(6) (min(n,k))! | n!l. The theorem is a consequence of (5).

Let n be a natural number. One can check that (711) reduces to n. Let k be

(n+k)! +k)
n (k!

a natural number. Note that is natural and (ntk)! is natural and —2-
! n!-(k!) (min(n,k))!

% is natural.
Let us consider natural numbers n, k. Now we state the propositions:
(7) ()| n- k.
PROOF: Define P[natural number] = (n!)*' | n-$;!. P[0]. For every natural
number m such that P[m] holds P[m + 1] by [14], (8)]. For every natural

number ¢, Plc|. O
(8) If k> 2-n, then 2" | k!. The theorem is a consequence of (6) and (7).

is natural and
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3. PROPERTIES OF BINOMIAL COEFFICIENT

Let n be a non zero natural number. Observe that (2) reduces to 0. Let m be

a natural number. Observe that (™ mod ") is zero. Now we state the propositions:

k) = (k)

(10) Let us consider an odd natural number n. Then (n.%1) = (n.%1). The
2 2

(9) Let us consider natural numbers k, n. Then (

theorem is a consequence of (9).
Let us consider a natural number n. Now we state the propositions:

(11) (2'273:'11)) =2 (2'7?'1). The theorem is a consequence of (9).

(12) ("3 = () =n
Let n be a natural number. Observe that ("¢') reduces to 1 and (") — (3)

2-(n+1)
n+1

(13) Let us consider a natural number n, and a non zero natural number m.
Then ("™°4™) < 2.

m—1

reduces to n. One can check that ( ) is even. Now we state the proposition:

nmod (m+1)

) is trivial.
m

Let m, n be natural numbers. One can check that (
Now we state the propositions:

(14) Let us consider a natural number n, and a non zero natural number m.
Then (nﬁidlm) = 1 if and only if n mod m = m — 1.
PRrROOF: If n mod m # m — 1, then (m;lo_dlm) =0.0

(15) Let us consider an odd prime number p. Then p | (Iﬁ ). The theorem is
2

a consequence of (10) and (11).
(16) Let us consider an odd prime number p, and a non zero natural number
+1
k. Ifk+1<p, thenp| (1))
Let us consider a prime number p and a non zero natural number k. Now
we state the propositions:
(17) If k # p, then () mod p = 0.
(18) If ptk, then (, ml(’)dp) mod p = 0. The theorem is a consequence of (17).
(19) Let us consider a prime number p, and an odd natural number n. Suppose
n < p. Then

i) (*-') mod p=p—1, and

n

(ii) (P~1) mod p = 1.

n—1
(20) Let us consider a prime number p, and an even natural number n. If
n < p, then (pgl) mod p = 1. The theorem is a consequence of (19).

(21) Let us consider a prime number p, a natural number n, and a non zero

natural number k. If n 4+ k < p, then (Zig) mod p = 0.
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PROOF: Define P[natural number| = for every non zero natural number
k such that k + $; < p holds (iigi) mod p = 0. P[0]. For every natural
number m such that P[m] holds P[m + 1]. For every natural number c,
Plc]. O
Let us consider a prime number p and a natural number n. Now we state
the propositions:

(22) If n+ 2 < p, then (ﬁié) mod p = 0. The theorem is a consequence of
(21).

(23) If n < p, then (PI") mod p = 1.
PROOF: Define Plnatural number] = if $; < p, then (pﬁl) mod p = 1.
P[0]. For every natural number m such that P[m] holds P[m + 1]. For
every natural number k, P[k]. O

(24) Let us consider a prime number p, a natural number n, and a natural

number k. Suppose k < n < p. Then (*1")
PROOF: Define Plnatural number| = for every natural number k such
that k < $; < p holds (P**") mod p = (%') mod p. P[0]. For every natural
number m such that P[m] holds P[m + 1]. For every natural number c,

Plc]. O

(25) Let us consider a prime number p, and a non zero natural number n. If

mod p = (}) mod p.

n < p, then (Zﬁp) mod p = 0. The theorem is a consequence of (24) and
(17).

(26) Let us consider a prime number p, and natural numbers k, n. Suppose
k <n < p. Then (* ;") mod p = (}}) mod p. The theorem is a consequence
of (25), (17), and (24).

(27) Let us consider a prime number p, and a natural number n. If p { n, then
() mod p = 0.

(28) Let us consider non zero natural numbers a, b. Then (al'b) mod b= 0.

(29) Let us consider natural numbers a, b. Then (a-b1+1) mod b = 1 mod b.
The theorem is a consequence of (28).

(30) Let us consider natural numbers a, b, c. Then (‘;ﬁ) mod ¢ = ((}) mod
¢) + ((,4,) mod ¢) mod .

(31) Let us consider a prime number p, and natural numbers n, k. Suppose
k # p. Then ((”mogp)ﬂ) mod p = ("H?Odp) mod p. The theorem is
a consequence of (17).
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4. ANTON’S LEMMA

Now we state the proposition:

(32) Let us consider a prime number p, a natural number n, and a natural

number k. Then (}}) mod p = (22325) : (Zgii:,’g) mod p.

PROOF: Define P[natural number] = for every natural number k, (%) mod
p= (%&;?(f;’) : (%(ii\:’}f) mod p. P[0]. For every natural number ¢ such that

Pli] holds PJi + 1]. For every natural number ¢, Plc]. O

Let us consider a prime number p and a natural number n. Now we state
the propositions:

(33) (%) mod p = (ndivp) mod p. The theorem is a consequence of (32).

P

(34) (p;") mod p = (ndivp) + 1 mod p. The theorem is a consequence of
(32).

(35) (pI'J") mod p =n mod p. The theorem is a consequence of (32).

(36) Let us consider a prime number p, and natural numbers n, k. Suppose
k < p. Then (}) mod p = ("mlsdp) mod p.
PROOF: Define P[natural number| = for every natural number k such that
k < p holds ($k1) mod p = ($1H;€Odp) mod p. For every natural number i
such that P[i] holds P[i + 1]. For every natural number ¢, Plc]. O

Let us consider natural numbers n, k and a prime number p. Now we state
the propositions:
(37) If k < p, then (”";:rk) mod p = 1. The theorem is a consequence of (36).

(38) If k < p, then ("szk) mod p = 1. The theorem is a consequence of (37)
and (9).

(39) Let us consider a prime number p. Then (2;’) mod p = 2 mod p. The
theorem is a consequence of (37) and (38).

(40) Let us consider a prime number p, and a natural number n. Then

(pfl) mod p = ("gl_o‘ljp) mod p. The theorem is a consequence of (36).

(41) Let us consider a non zero natural number k, a natural number i, and

ZA'pJ“(p_,k)) mod p = 1. The theorem is a conse-

a prime number p. Then ( o'k

quence of (36).

Let us consider a prime number p and natural numbers n, k. Now we state
the propositions:
(42) 1If k < p, then (”":rk) mod p = (") mod p.
PROOF: Define Pnatural number] = if $; < p, then (”'p;r&) mod p =
n-p
¥
For every natural number k, P[k]. O

) mod p. For every natural number m such that P[m] holds P[m + 1].
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(43) (("erk)'p) mod p =n+ k mod p.

PROOF: Define P[natural number| = (("+§1)'p) mod p = n + $; mod p.
P[0]. For every natural number m such that P[m] holds P[m + 1]. For
every natural number k, P[k|. O

(44) Let us consider a prime number p, natural numbers k, n, and a non zero

natural number m. If k +m < p, then (T;Tf)jkk) mod p = 0.
PROOF: Define P[natural number] = for every natural number k for every
non zero natural number m such that k+m < p holds ($71np+4];k) mod p = 0.

P[0]. For every natural number ¢ such that P[g] holds P[q + 1]. For every
natural number ¢, Plc|. O

(45) Let us consider a natural number n. Then Parity((n+1)!) = (Parity(n+
1)) - (Parity(n!)).

(46) Let us consider an even natural number n. Then Parity(n!) = Parity((n+
1)!). The theorem is a consequence of (45).

(47) Let us consider a natural number n.
Then Parity((n + 2)!) = 2 - (Parity(Triangle(n + 1))) - (Parity(n!)).

5. PASCAL’S TRIANGLE STEP BY STEP

Let f be a l-element finite sequence. Let us note that (f(1)) reduces to f.
Let f be a 2-element finite sequence. One can verify that (f(1), f(2)) reduces
to f. Let f be a 3-element finite sequence. One can verify that (f(1), f(2), f(3))
reduces to f. Let f be a 4-element finite sequence. Let us note that (f(1), f(2),
f(3), f(4)) reduces to f.

Let f be a 5-element finite sequence. Let us note that (f(1), f(2), f(3), f(4),
f(5)) reduces to f. Let f be a 6-element finite sequence. One can verify that
(f(1), £(2), f(3), f(4), f(5), f(6)) reduces to f. Let f be a 7-element finite sequ-
ence. One can verify that (f(1), f(2), f(3), f(4), f(5), f(6), f(7)) reduces to f.
Let f be an 8-element finite sequence. Let us note that (f(1), f(2), f(3), f(4),
f(5), £(6), £(7), £(8)) reduces to f.

Let n be a natural number. Let us observe that (0)(n) reduces to 0. Let a1, as,
as, ag, as be complex numbers. One can verify that (a1, ag, as, as, as) is complex-
valued. Let ag be a complex number. One can check that (a1, ag, as, as, as, ag) is
complex-valued. Let a7 be a complex number. One can verify that (a1, as, as, as,
as, ag, ay) is complex-valued. Let ag be a complex number. Let us note that
(a1,a9,as,a4,as, a6, az,ag) is complex-valued. Now we state the propositions:

(48) Let us consider a non zero natural number n, and finite sequences f, g.
Then (f ™ g)(len f +n) = g(n).
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(49) Let us consider a non zero natural number n, a complex number c,
and a finite sequence f. Then ((¢) ~ f)(n + 1) = f(n). The theorem is
a consequence of (48).

~

(50) Let us consider a finite sequence f, and a natural number n. Then (f
(0))(n) = f(n). The theorem is a consequence of (48).

(51) Let us consider a natural number n. Then ((”31), e (ZE)) = (0) °
(05 G +C@)s -+ () ™ (0)-
PROOF: For every natural number i such that 1 <4 < len(("$"),..., (ZE)}

olds (1) (SED0) = (10) (e () (.o ()~ O
O

(52) Let us consider complex numbers aq, ag, b1, b2, a natural number n, and
n-element, complex-valued finite sequences f, g. Then f~ (a1, a2)+g~ (b1,
bo) = (f +9) ™ (a1 + b1, az + ba).

(53) Let us consider complex numbers ai, ag, ag, by, bz, b3, a natural number
n, and n-element, complex-valued finite sequences f, g. Then f ™ (a1, aq,
as) + g~ (b1,b2,b3) = (f +g) ~ (a1 + b1, a2 + b2, az + bs).

(54) Let us consider complex numbers a1, ag, as, a4, as, by, ba, b3, ba, bs.
Then (a1, ag, a3, as, as)+ (b1, ba, b3, by, bs) = (a1+b1, as+ba, az+bs, as+by,
as + bs).

(55) Let us consider complex numbers aq, az, as, a4, as, ag, b1, ba, b3, by, bs,
bG. Then (al, a2z, a3, aq4,as, aﬁ) + (bl, bg, b3, b4, b5, bﬁ) = (a1 —|—b1, a2+62, asz+
b3, ayq + by, az + by, ag + bg). The theorem is a consequence of (54).

(56) Let us consider complex numbers ay, a2, a3, a4, as, ag, a7, by, by, bs,
by, bs, bg, by. Then (ai,as9,as,aq,as,aq,a7) + (b1, ba, bs, by, bs, be, b7) =
(a1 + b1, a2 + by, az + b3, aq + by, as + bs, ag + bg, a7 + by). The theorem is
a consequence of (54) and (52).

(57) Let us consider complex numbers a1, ag, as, a4, as, ag, az, ag, by, ba, bs,
b4, b5, b6, b7, bg. Then ((11, as,as, a4, as, ag, ay, a8)+(b1, bQ, bg, b4, b5, b6, b7, bg)
= (a1 4 b1, a0 + b, ag + b3, ag + by, as + b5, ag + bg, a7 + by, ag + bg). The
theorem is a consequence of (54) and (53).

(58) {(p)---+ (o) =

9 (.. () = <

(60) () (5)) = <1 2 o}

(61) () (3)) = (1,3,3,1).

(62) ((3)s---»(3) =(1,4,6,4,1). The theorem is a consequence of (51), (61),
and (54)

63) ((),..-,(2)) =(1,5,10,10,5,1). The theorem is a consequence of (51)
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(64) ((g), e (g)> = (1,6,15,20,15,6,1). The theorem is a consequence of
(51), (63), and (56).

(65) <(g), e (§)> =(1,7,21,35,35,21,7,1). The theorem is a consequence of
(51), (64), and (57).

(66) ((g), . ,( )) = (1,8,28,56,70,56,28,8,1). The theorem is a consequen-

ce of (51), (65), and (57).
Let us consider a natural number n. Now we state the propositions:
2 4 5 5
67) @)+ )+ () =03 - (")
2 4 6 7
(68) () + (") + ("3 + (50 = () - (19
(69) Let us consider natural numbers n, k. Suppose k € Seg(n + 1). Then
there exist natural numbers [, m such that
(i) l=k—1,and
(i) m=n—1L.
(70) Let us consider complex numbers a, b, and natural numbers n, k. Suppose
k € Seg(n + 1). Then there exists an object ¢ and there exist natural

numbers [, m such that m =k —1 and [ = n — m and ¢ = a' - b™. The
theorem is a consequence of (69).

6. HARMONIC TRIANGLE

Let n be a non zero natural number. The functor HTriangleg(n) yielding
a finite sequence is defined by the term
—1 ~1
(Def. 1) n-(("7)s--5 (20
One can check that HTriangleg(n) is n-element and HTriangleg(n) is N-
valued. Now we state the propositions:

(71) Let us consider non zero natural numbers n, k. Then (HTriangleg (n))(k) =

ne (i21)-

(72) HTriangler (1) = (1).

(73) HTriangler(2) = (2,2).

(74) HTriangler(3) = (3,6, 3).

(75) HTriangler(4) = (4,12,12,4).

(76) HTriangleg(5) = (5, 20, 30, 20, 5). The theorem is a consequence of (62).
(77) HTrianglegr(6) = (6,30, 60,60, 30,6). The theorem is a consequence of

(63).
(78) HTriangler(7) = (7,42,105, 140, 105,42, 7). The theorem is a consequ-
ence of (64).
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(79) HTriangler(8) = (8,56, 168, 280, 280, 168, 56, 8). The theorem is a con-
sequence of (65).
Let » be a non zero natural number. The functor HTriangle(n) yielding
a finite sequence is defined by the term

(Def. 2) (HTriangleg(n))~!.
Let us observe that HTriangle(n) is n-element and HTriangle(n) is R-valued.
Now we state the propositions:

(80) Let us consider non zero natural numbers n, k. Then (HTriangle(n))(k) =

ﬁ The theorem is a consequence of (71).
k—1

(81) Let us consider a non zero natural number n. Then Y HTriangler(n) =
n -2

(82) HTriangle(1) = (1).

(83) HTriangle(2) = (3, 1). The theorem is a consequence of (73).

(84) HTriangle(3) = (3, £, 3). The theorem is a consequence of (74).

(85) HTriangle(4) = (4, iz L. 1). The theorem is a consequence of (75).

(86) HTriangle(5) = (£, % %, > 555 5> The theorem is a consequence of (76).

(87) HTriangle(6) = (%, 4. & a5> 35+ 5)- The theorem is a consequence of
(77).

(88) HTriangle(7) = %, 4—12, 1—(1)5, %0, ﬁ, i 7) The theorem is a consequence
of (78).

(89) HTriangle(8) = (3, 2, 163+ 385> 555+ Tag» 25+ 5)- The theorem is a conse-

quence of (79).

7. RASCAL TRIANGLE

Let n be a natural number. The functor Rascal(n) yielding a finite sequence
is defined by

(Def. 3) dom it = Seg(n+1) and for every natural number ¢ such that i € dom it
holds it(i) = (i —1)- (n+1 — i) + 1.
Let n be a natural number. Let us observe that Rascal(n) is (n+ 1)-element.
Now we state the propositions:

(90) Rascal(0) = (1).

(91) Rascal(1) = (1,1).

(92) Rascal(2) = (1,2,1).
(93) Rascal(3) =(1,3,3,1).
(94) Rascal(4) = (1,4,5,4,1).
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(95) Rascal(b) = (1,5,7,7,5,1).
(96) Rascal(6) = (1,6,9,10,9,6,1).
(97) Rascal(7) =(1,7,11,13,13,11,7,1).
(98) (Rascal(7))(4) = 13.
(99) Let us consider a natural number n. Then (Rascal(n))(1) = 1.
(100) Let us consider a non zero natural number n. Then (Rascal(n))(2) = n.

Let n, m be natural numbers. Let us note that (Rascal(n))(m) is natural.
Let us consider natural numbers k, n. Now we state the propositions:

(101) (Rascal(k +n))(n + 1) + (Rascal(k + n + 2))(n + 2) = (Rascal(k + n +
1))(n+1) + (Rascal(k + n+1))(n+2) + 1.

(102) (Rascal(k +n))(n + 1) - (Rascal(k + n + 2))(n + 2) = (Rascal(k + n +
1))(n+1) - (Rascal(k +n+1))(n+2) + 1.
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