REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/17794
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorHuuskonen, Taneli-
dc.date.accessioned2025-01-10T08:11:16Z-
dc.date.available2025-01-10T08:11:16Z-
dc.date.issued2024-
dc.identifier.citationFormalized Mathematics, Volume 32, Issue 1, Pages 213–222pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/17794-
dc.description.abstractAn abstract, generic textbook notion of a finitary proof and some of its basic properties are presented, using the Mizar system. A general form of Lindenbaum’s lemma is included.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectfinitary proofpl
dc.subjectproof systempl
dc.subjectLindenbaum’s lemmapl
dc.titleFundamentals of Finitary Proofspl
dc.typeArticlepl
dc.rights.holder© 2024 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2024-0018-
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3- 319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesHeinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical Logic. Springer, 1994.pl
dc.description.referencesJoanna Golińska-Pilarek and Taneli Huuskonen. Logic of descriptions. A new approach to the foundations of mathematics and science. Studies in Logic, Grammar and Rhetoric, 40(27), 2012.pl
dc.description.referencesJoanna Golińska-Pilarek and Taneli Huuskonen. Grzegorczyk’s non-Fregean logics. In Rafał Urbaniak and Gillman Payette, editors, Applications of Formal Philosophy: The Road Less Travelled, Logic, Reasoning and Argumentation. Springer, 2015.pl
dc.description.referencesAdam Grabowski. On fuzzy negations and laws of contraposition. Lattice of fuzzy negations. Formalized Mathematics, 31(1):151–159, 2023. doi:10.2478/forma-2023-0014.pl
dc.description.referencesAdam Grabowski and Christoph Schwarzweller. Revisions as an essential tool to maintain mathematical repositories. In M. Kauers, M. Kerber, R. Miner, and W. Windsteiger, editors, Towards Mechanized Mathematical Assistants. Lecture Notes in Computer Science, volume 4573, pages 235–249. Springer: Berlin, Heidelberg, 2007.pl
dc.description.referencesAndrzej Grzegorczyk. Filozofia logiki i formalna logika niesymplifikacyjna. Zagadnienia Naukoznawstwa, XLVII(4), 2012. In Polish.pl
dc.description.referencesTaneli Huuskonen. Grzegorczyk’s logics. Part I. Formalized Mathematics, 23(3):177–187, 2015. doi:10.1515/forma-2015-0015.pl
dc.description.referencesTakao Inou´e and Riku Hanaoka. Intuitionistic Propositional Calculus in the extended framework with modal operator. Part II. Formalized Mathematics, 30(1):1–12, 2022. doi:10.2478/forma-2022-0001.pl
dc.description.referencesElliott Mendelson. Introduction to Mathematical Logic. Chapman Hall/CRC, 1997. http://books.google.pl/books?id=ZO1p4QGspoYC.pl
dc.description.referencesRoman Suszko. Non-Fregean logic and theories. Analele Universitatii Bucuresti. Acta Logica, 9:105–125, 1968.pl
dc.description.referencesRoman Suszko. Semantics for the sentential calculus with identity. Studia Logica, 28: 77–81, 1971.pl
dc.description.referencesRoman Suszko. Abolition of the Fregean axiom. In R. Parikh, editor, Logic Colloquium: Symposium on Logic held at Boston, 1972–73, volume 453 of Lecture Notes in Mathematics, pages 169–239, Heidelberg, 1975. Springer.pl
dc.identifier.eissn1898-9934-
dc.description.volume32pl
dc.description.issue1pl
dc.description.firstpage213pl
dc.description.lastpage222pl
dc.identifier.citation2Formalized Mathematicspl
Występuje w kolekcji(ach):Formalized Mathematics, 2024, Volume 32, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
Fundamentals-of-Finitary-Proofs.pdf263,21 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons