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Introduction

An abstract, generic textbook notion of a finitary proof and some of its
basic properties are presented, using the Mizar system [1], [2]. The approach
is analogous to that of many textbooks, such as [11] or [3]. A general form of
Lindenbaum’s lemma is included.

The outline of the paper is as follows: first three sections define formulas and
rules, proof steps and derivability. Section 4 describes formally the behaviour
of supersets of formulas and rules. Section 5 contains the key definition in this
article: the structure definining proof systems (prefixed by 1-sorted); one can
notice that due to the set-theoretic approach claimed in the Mizar Mathematical
Library, a binary relation can denote either a single, or more rules (hence a type
is just a rule, but the selector in the structure has the name “rules”). Closing
sections contain Lindenbaum’s and Teichmüller-Tukey lemmas.

Part of the contents were taken from [9], which was written to formalize
some ideas from [4], [5], and [8]. This general approach could allow either to
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rewrite previous articles in this uniform language in the process of revisions [7],
or to develop other logics, such as Suszko’s logics ([12], [13], [14]), intuitionistic
logic [10], or even fuzzy logics [6].

1. Preliminaries: Formulas and Rules

From now on i, j, k, l, m, n denote natural numbers, a, b, c, t, u denote
objects, X, Y, Z denote sets, D, D1, D2, H denote non empty sets, and p, q, r,
s denote finite sequences.

Let R be a binary relation. We say that R is finitary if and only if

(Def. 1) for every a such that a ∈ domR holds a is a finite set.

Let us observe that every binary relation which is empty is also finitary and
there exists a binary relation which is finitary.

We introduce the notation formula as a synonym of object.
A rule is a finitary binary relation.
A formula-finset is a finite set.
A formula-sequence is a finite sequence. Let H be a set.
A rule of H is a rule defined by

(Def. 2) dom it ⊆ FinH and rng it ⊆ H.

Let H be a non empty set.
A formula of H is a formula defined by

(Def. 3) it ∈ H.

Let H be a set.
A formula-finset of H is a formula-finset defined by

(Def. 4) it ⊆ H.

A formula-sequence of H is a formula-sequence defined by

(Def. 5) it is a finite sequence of elements of H.

In the sequel R, R1, R2 denote rules, A, A1, A2 denote non empty sets, B,
B1, B2 denote sets, P , P1, P2 denote formula-sequences, and S, S1, S2 denote
formula-finsets.

Let us consider P . Observe that the functor rngP yields a formula-finset.
Let us consider H. Let B1, B2 be subsets of H. Note that the functor B1 ∪ B2
yields a subset of H. Let us consider S1 and S2. One can check that the functor
S1 ∪S2 yields a formula-finset. Let us consider H. Let S1, S2 be formula-finsets
of H. Let us note that the functor S1 ∪ S2 yields a formula-finset of H. Let us
consider R1 and R2. Note that the functor R1∪R2 yields a rule. Let us consider
H. Let R1, R2 be rules of H. Let us observe that the functor R1 ∪ R2 yields
a rule of H.
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2. Proof Steps

Let us consider B, R, P , and n. We say that (P , n) is a correct step w.r.t.
B, R if and only if

(Def. 6) P (n) ∈ B or there exists a formula-finset Q such that 〈〈Q, P (n)〉〉 ∈ R
and for every t such that t ∈ Q there exists k such that k ∈ domP and
k < n and P (k) = t.

We say that P is (B, R)-correct if and only if

(Def. 7) for every k such that k ∈ domP holds (P , k) is a correct step w.r.t. B,
R.

Let us observe that every formula-sequence which is non (B, R)-correct is
also non empty.

Let us consider H. Let us observe that there exists a formula-sequence of
H which is (B, R)-correct and there exists a formula-sequence which is (B,
R)-correct. Now we state the proposition:

(1) Let us consider an element a of A. Then 〈a〉 is (A, R)-correct.

Let us consider A and R. Let us observe that there exists a formula-sequence
which is non empty and (A, R)-correct.

3. Derivability

Let us consider B, R, and S. We say that S is (B, R)-derivable if and only
if

(Def. 8) there exists P such that S = rngP and P is (B, R)-correct.

Now we state the propositions:

(2) If P is (B, R)-correct and P = P1 a P2, then P1 is (B, R)-correct.

(3) If P1 is (B, R)-correct and P2 is (B, R)-correct, then P1 a P2 is (B,
R)-correct.

(4) If S1 is (B, R)-derivable and S2 is (B, R)-derivable, then S1 ∪ S2 is (B,
R)-derivable. The theorem is a consequence of (3).

(5) If B ⊆ B1 and R ⊆ R1 and P is (B, R)-correct, then P is (B1, R1)-
correct.

Let us consider B and a. We say that a is B-axiomatic if and only if

(Def. 9) a ∈ B.

Let us consider R. We say that B,R ` a if and only if

(Def. 10) there exists P such that a ∈ rngP and P is (B, R)-correct.

We say that a is (B, R)-provable if and only if
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(Def. 11) B,R ` a.

4. Extensions

Let us consider B and B1. We say that B1 is B-extending if and only if

(Def. 12) B ⊆ B1.
Let us consider R and R1. We say that R1 is R-extending if and only if

(Def. 13) R ⊆ R1.
Let us consider B. Observe that there exists a set which is B-extending. Let

us consider R. Let us observe that there exists a rule which is R-extending. Let
us consider B.

An extension of B is a B-extending set. Let us consider H. Let B be a subset
of H. Note that there exists a subset of H which is B-extending.

An extension of B is a B-extending subset of H. Let us consider R.
An extension of R is an R-extending rule. Let us consider H. Let B be

a subset of H and t be a formula of H. The functor B+ t yielding an extension
of B is defined by the term

(Def. 14) B ∪ {t}.
Now we state the proposition:

(6) a is (B ∪ {t})-axiomatic if and only if a is B-axiomatic or a = t.

From now on C denotes an extension of B and E denotes an extension of R.
Let us consider B and C. Let us note that every set which is C-extending

is also B-extending and every object which is non C-axiomatic is also non B-
axiomatic.

Let us consider R and E. Let us note that every rule which is E-extending
is also R-extending.

Let us consider B and R1. We say that R1 is (B, R)-derivable if and only if

(Def. 15) for every S and t such that 〈〈S, t〉〉 ∈ R1 holds B ∪ S,R ` t.
Now we state the propositions:

(7) B,R ` t if and only if there exists S such that t ∈ S and S is (B,
R)-derivable.

(8) If a ∈ B, then B,R ` a. The theorem is a consequence of (1).

Let us consider B and R. One can verify that every object which is non (B,
R)-provable is also non B-axiomatic. Now we state the propositions:

(9) If for every a such that a ∈ S holds B,R ` a, then there exists S1 such
that S ⊆ S1 and S1 is (B, R)-derivable.
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Proof: Define X [set] ≡ there exists S1 such that $1 ⊆ S1 and S1 is (B,
R)-derivable. X [∅]. For every sets x, B1 such that x ∈ S and B1 ⊆ S and
X [B1] holds X [B1 ∪ {x}]. X [S]. �

(10) If S is (B, R)-derivable and B ∩ S ⊆ B1, then S is (B1, R)-derivable.
Proof: Consider P such that S = rngP and P is (B, R)-correct. P is
(B1, R)-correct. �

(11) If for every a such that a ∈ S holds B,R`a and 〈〈S, t〉〉 ∈ R, then B,R`t.
The theorem is a consequence of (9).

(12) If B,R ` a, then a ∈ B or there exists S such that 〈〈S, a〉〉 ∈ R and for
every b such that b ∈ S holds B,R ` b.

(13) If S1 is (B, R)-derivable and S2 is (S1, R)-derivable, then S1 ∪S2 is (B,
R)-derivable.
Proof: Consider P1, P2 such that P1 is (B, R)-correct and S1 = rngP1
and P2 is (S1, R)-correct and S2 = rngP2. Set P = P1 a P2. For every k
such that k ∈ domP1 holds (P , k) is a correct step w.r.t. B, R. P is (B,
R)-correct. �

(14) If B1, R`a and for every b such that b ∈ B1 holds B,R`b, then B,R`a.
The theorem is a consequence of (7), (9), (10), and (13).

(15) If B,R ` a, then C,E ` a. The theorem is a consequence of (5).

Let us consider B, R, and a. Note that a is (B, R)-provable if and only if
the condition (Def. 16) is satisfied.

(Def. 16) for every C and E, C,E ` a.
Let us consider C. Note that every object which is non (C, R)-provable is

also non (B, R)-provable. Let us consider E. Observe that every object which is
non (C, E)-provable is also non (B, R)-provable. Now we state the propositions:

(16) R1 ∪R2 is (B, R)-derivable if and only if R1 is (B, R)-derivable and R2
is (B, R)-derivable.

(17) Let us consider a subset B of H, a rule R of H, and a. If B,R ` a, then
a ∈ H.

5. Proof Systems

We consider proof systems which extend 1-sorted structures and are systems

〈〈a carrier, axioms, rules〉〉

where the carrier is a set, the axioms constitute a subset of the carrier, the rules
constitute a rule of the carrier.



218 taneli huuskonen

Let P be a proof system. A formula-finset of P is a formula-finset of the car-
rier of P . Let a be an object. We say that P ` a if and only if

(Def. 17) the axioms of P, the rules of P ` a.
Note that there exists a proof system which is non empty.
From now on P denotes a non empty proof system, B, B1, B2 denote subsets

of P , and F denotes a finite subset of P . Now we state the proposition:

(18) If P ` a, then a is an element of P .

Let us consider P and B. We say that P ` B if and only if

(Def. 18) for every a such that a ∈ B holds P ` a.
Let us consider B1 and B2. One can check that the functor B1 ∪ B2 yields

a subset of P .

6. Consistency

Let us consider P . We say that P is consistent if and only if

(Def. 19) there exists a such that a ∈ P and P 0 a.
Let us consider B. The functor P ∪B yielding a non empty proof system is

defined by the term

(Def. 20) 〈〈the carrier of P, (the axioms of P ) ∪B, the rules of P 〉〉.
Let us note that there exists a non empty proof system which is consistent

and strict. Let P be a strict proof system and E be an empty subset of P . Let us
observe that P ∪E reduces to P . Let us consider P . We introduce the notation
P is inconsistent as an antonym for P is consistent.

Let us consider B. We say that B is consistent if and only if

(Def. 21) P ∪B is consistent.

Let P be a consistent, non empty proof system. Note that there exists a sub-
set of P which is consistent.

Let us consider P and B. We introduce the notation B is inconsistent as an
antonym for B is consistent.

One can check that there exists a subset of P which is inconsistent.
We say that P is paraconsistent if and only if

(Def. 22) every finite subset of P is consistent.

One can verify that every non empty proof system which is paraconsistent
is also consistent and there exists a non empty proof system which is consistent
and non paraconsistent.
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7. Contradictions and Lindenbaum’s Lemma

Let us consider P , B, and B1. We say that B1 is B-omitting if and only if

(Def. 23) there exists a such that a ∈ B and P ∪B1 0 a.
Now we state the proposition:

(19) If B is inconsistent, then B1 is consistent iff B1 is B-omitting. The
theorem is a consequence of (8) and (14).

Let us consider P . Let B be an inconsistent subset of P . One can verify that
every subset of P which is B-omitting is also consistent and every subset of P
which is non B-omitting is also inconsistent.

Let us consider B. One can verify that there exists a subset of P which is
non B-omitting. Now we state the proposition:

(20) If B1 is B-omitting and B2 ⊆ B1, then B2 is B-omitting. The theorem
is a consequence of (15).

Let us consider P and B. The functor Omit(P,B) yielding a family of subsets
of P is defined by the term

(Def. 24) {B1, where B1 is a subset of P : B1 is B-omitting}.

One can verify that the functor Omit(P,B) is defined by

(Def. 25) for every B1, B1 ∈ it iff B1 is B-omitting.

Let us consider B1. We say that B1 is B-maximally-omitting if and only if

(Def. 26) B1 is B-omitting and for every B2 such that B1 ⊂ B2 holds B2 is not
B-omitting.

Observe that every subset of P which is B-maximally-omitting is also B-
omitting.

Let us consider X. We say that X is finite-character if and only if

(Def. 27) for every a, a ∈ X iff there exists a set B such that B = a and for every
finite subset S of B, S ∈ X.

Let us observe that X is finite-character if and only if the condition (Def.
28) is satisfied.

(Def. 28) for every Y, Y ∈ X iff for every finite subset S of Y, S ∈ X.

Let F be a family of subsets of X. Observe that F is finite-character if and
only if the condition (Def. 29) is satisfied.

(Def. 29) for every subset B of X, B ∈ F iff for every finite subset S of B, S ∈ F .

One can check that there exists a family of subsets of X which is non empty
and finite-character and every set which is empty is also finite-character and
there exists a set which is non empty and finite-character.
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8. Teichmüller-Tukey Lemma

Now we state the proposition:

(21) Let us consider a non empty, finite-character set X. Then there exists
an element Y of X such that for every element Z of X, Y 6⊂ Z.
Proof: For every set C such that C ⊆ X and C is ⊆-linear there exists Y
such that Y ∈ X and for every Z such that Z ∈ C holds Z ⊆ Y. Consider
Y such that Y ∈ X and for every Z such that Z ∈ X and Z 6= Y holds
Y 6⊆ Z. �

Let us consider P and F . One can check that Omit(P, F ) is finite-character.
Now we state the proposition:

(22) If B is F -omitting, then there exists B1 such that B ⊆ B1 and B1 is
F -maximally-omitting. The theorem is a consequence of (21).

Let us consider P and B. We say that B is maximally-consistent if and only
if

(Def. 30) B is consistent and for every B1 such that B ⊂ B1 holds B1 is inconsi-
stent.

Now we state the proposition:

(23) If P is consistent and non paraconsistent and B is consistent, then there
exists B1 such that B ⊆ B1 and B1 is maximally-consistent. The theorem
is a consequence of (22).

The scheme UnOpCongr deals with a non empty set X and a unary functor
F yielding an element of X and an equivalence relation E of X and states that

(Sch. 1) There exists a unary operation f on Classes E such that for every element
x of X , f([x]E) = [F(x)]E

provided

• for every elements x, y of X such that 〈〈x, y〉〉 ∈ E holds 〈〈F(x), F(y)〉〉 ∈ E .

The scheme BinOpCongr deals with a non empty set X and a binary functor
F yielding an element of X and an equivalence relation E of X and states that

(Sch. 2) There exists a binary operation f on Classes E such that for every ele-
ments x, y of X , f([x]E , [y]E) = [F(x, y)]E

provided

• for every elements x1, x2, y1, y2 of X such that 〈〈x1, x2〉〉, 〈〈y1, y2〉〉 ∈ E holds
〈〈F(x1, y1), F(x2, y2)〉〉 ∈ E .

The scheme ProofInduction deals with a set B and a rule R and a unary
predicate S and states that
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(Sch. 3) For every a such that B,R ` a holds S[a]

provided

• for every a such that a ∈ B holds S[a] and

• for every X and a such that 〈〈X, a〉〉 ∈ R and for every b such that b ∈ X
holds S[b] holds S[a].

Let us consider R and X. We say that X is R-closed if and only if

(Def. 31) for every Y and a such that 〈〈Y, a〉〉 ∈ R and Y ⊆ X holds a ∈ X.

9. Theorems

Let us consider D and R. A theorem of D, R is an object defined by

(Def. 32) D,R ` it .
Note that the type possesses the sethood property. Let us consider X. The
functor Theorems(X,R) yielding a set is defined by the term

(Def. 33) {t, where t is an element of X ∪ rngR : X,R ` t}.

Note that the functor Theorems(X,R) is defined by

(Def. 34) for every a, a ∈ it iff X,R ` a.
Note that Theorems(X,R) is X-extending and R-closed and there exists

a set which is X-extending and R-closed. Now we state the proposition:

(24) X,R ` a if and only if for every R-closed, X-extending set Y, a ∈ Y.
Let us consider P . The functor Theorems(P ) yielding a subset of P is defined

by the term

(Def. 35) Theorems((the axioms of P ), (the rules of P )).

Let us consider X. We say that X is P -closed if and only if

(Def. 36) X is (the rules of P )-closed and (the axioms of P )-extending.

Let us note that Theorems(P ) is P -closed and every set which is P -closed
is also (the rules of P )-closed and (the axioms of P )-extending and every set
which is (the rules of P )-closed and (the axioms of P )-extending is also P -closed
and there exists a subset of P which is P -closed and there exists a set which is
P -closed. Now we state the proposition:

(25) P ` a if and only if for every P -closed set X, a ∈ X. The theorem is
a consequence of (24).
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