Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/17786
Pełny rekord metadanych
Pole DC | Wartość | Język |
---|---|---|
dc.contributor.author | Nakasho, Kazuhisa | - |
dc.contributor.author | Shidama, Yasunari | - |
dc.date.accessioned | 2025-01-09T12:19:13Z | - |
dc.date.available | 2025-01-09T12:19:13Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Formalized Mathematics, Volume 32, Issue 1, Pages 195–201 | pl |
dc.identifier.issn | 1426-2630 | - |
dc.identifier.uri | http://hdl.handle.net/11320/17786 | - |
dc.description.abstract | In this article we formalize in Mizar several properties of curves. We introduce the definition of the ArcLenP function and define arc length parametrization with its fundamental properties. Finally we prove an isoperimetric inequality that holds regardless of the curve’s parametrization. | pl |
dc.language.iso | en | pl |
dc.publisher | DeGruyter Open | pl |
dc.rights | Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) | pl |
dc.rights.uri | https://creativecommons.org/licenses/by-sa/3.0/ | pl |
dc.subject | isoperimetric theorem | pl |
dc.subject | differential geometry | pl |
dc.subject | parametric curve | pl |
dc.title | On the Properties of Curves and Parametrization-Independent Isoperimetric Inequality | pl |
dc.type | Article | pl |
dc.rights.holder | © 2024 The Author(s) | pl |
dc.rights.holder | CC BY-SA 3.0 license | pl |
dc.identifier.doi | 10.2478/forma-2024-0016 | - |
dc.description.Affiliation | Kazuhisa Nakasho - Yamaguchi University, Yamaguchi, Japan | pl |
dc.description.Affiliation | Yasunari Shidama - Karuizawa Hotch 244-1, Nagano, Japan | pl |
dc.description.references | Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17. | pl |
dc.description.references | Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6. | pl |
dc.description.references | Viktor Bl˚asjö. The isoperimetric problem. The American Mathematical Monthly, 112(6): 526–566, 2005. | pl |
dc.description.references | Noboru Endou. Differentiation on interval. Formalized Mathematics, 31(1):9–21, 2023. doi:10.2478/forma-2023-0002. | pl |
dc.description.references | Noboru Endou and Yasunari Shidama. Multidimensional measure space and integration. Formalized Mathematics, 31(1):181–192, 2023. doi:10.2478/forma-2023-0017. | pl |
dc.description.references | Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281–284, 2001. | pl |
dc.description.references | Noboru Endou, Yasunari Shidama, and Masahiko Yamazaki. Integrability and the integral of partial functions from R into R. Formalized Mathematics, 14(4):207–212, 2006. doi:10.2478/v10037-006-0023-y. | pl |
dc.description.references | Adam Grabowski. On the subcontinua of a real line. Formalized Mathematics, 11(3): 313–322, 2003. | pl |
dc.description.references | John Harrison. The HOL Light system reference. 2023. http://www.cl.cam.ac.uk/~jrh13/hol-light/reference.pdf. | pl |
dc.description.references | John Harrison. The isoperimetric inequality. 2023. Available online at https://github.com/jrh13/hol-light/blob/master/100/isoperimetric.ml. | pl |
dc.description.references | Andreas Hehl. The isoperimetric inequality. Proseminar Curves and Surfaces, Universitaet Tuebingen, Tuebingen, 2013. | pl |
dc.description.references | Peter David Lax. A short path to the shortest path. The American Mathematical Monthly, 102(2):158–159, 1995. | pl |
dc.description.references | Kazuhisa Nakasho and Yasunari Shidama. Classical Isoperimetric Theorem. Formalized Mathematics, 32(1):187–194, 2024. doi:10.2478/forma-2024-0015. | pl |
dc.description.references | Robert Osserman. The isoperimetric inequality. Bulletin of American Mathematical Monthly, 6(84):1182–1238, 1978. | pl |
dc.description.references | Andrew N. Pressley. Elementary Differential Geometry. Springer Science & Business Media, 2010. | pl |
dc.description.references | Alan Siegel. An isoperimetric theorem in plane geometry. Discrete and Computational Geometry, 29(2):239–255, 2003. doi:10.1007/s00454-002-2809-1. | pl |
dc.description.references | Marten Straatsma. Towards formalising the isoperimetric theorem. BSc thesis, Radboud University Nijmegen, 2022. | pl |
dc.description.references | Freek Wiedijk. Formalizing 100 theorems. Available online at http://www.cs.ru.nl/~freek/100/. | pl |
dc.identifier.eissn | 1898-9934 | - |
dc.description.volume | 32 | pl |
dc.description.issue | 1 | pl |
dc.description.firstpage | 195 | pl |
dc.description.lastpage | 201 | pl |
dc.identifier.citation2 | Formalized Mathematics | pl |
dc.identifier.orcid | 0000-0003-1110-4342 | - |
Występuje w kolekcji(ach): | Formalized Mathematics, 2024, Volume 32, Issue 1 |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
On-the-Properties-of-Curves-and-ParametrizationIndependent-Isoperimetric-Inequality.pdf | 285,68 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL