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Summary. In this article we formalize in Mizar several properties of cu-
rves. We introduce the definition of the ArcLenP function and define arc length
parametrization with its fundamental properties. Finally we prove an isoperime-
tric inequality that holds regardless of the curve’s parametrization.
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Introduction

In this article we formalize in Mizar [1], [2] several properties of curves and
establish a parametrization-independent isoperimetric inequality [3]. The paper
is structured into three main sections: Section 1 introduces fundamental defi-
nitions, notational conventions and initial theorems, including the definition of
the ArcLenP function (defined as the Mizar functor). In the second section arc
length parametrization is constructed and some of its properties, including dif-
ferentiability and characteristics of its inverse function, are explored. Section 3
proves an isoperimetric inequality [16] that holds regardless of the curve’s pa-
rametrization [11].
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We use our earlier formalization of Peter D. Lax paper [12] contained in [13].
It provides a rigorous foundation for further work in differential geometry [15]
and analysis (compare recent results encoding this area within the Mizar Mathe-
matical Library in [4], [5]). It allows also for further formalization of the results
strictly connected with the isoperimetric theorem [14]. This work, as a conti-
nuation of [13], represents the solution of the problem #43 of Freek Wiedijk’s
“Formalizing 100 Theorems” project [18] (compare the formal development in
HOL Light [9]: [10] and [17]).

1. Preliminaries and Basic Theorems

From now on a, b, r denote real numbers, A denotes a non empty set, X,
x denote sets, f , g, F , G denote partial functions from R to R, and n denotes
an element of N.

Let a, b be real numbers and x, y be partial functions from R to R. The
functor ArcLenP(x, y, a, b) yielding a partial function from R to R is defined by

(Def. 1) dom it = [a, b] and for every real number t such that t ∈ [a, b] holds

it(t) =
t∫
a

(�
1
2 ) · (x′�domx · x′�domx + y′�dom y · y′�dom y)(x)dx.

Now we state the propositions:

(1) Let us consider real numbers a, b, d, and a partial function f from R
to R. Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous and
f(a) < d < f(b). Then there exists a real number c such that

(i) a < c < b, and

(ii) d = f(c).

Proof: Reconsider g = f�[a, b] as a function from [a, b]T into R111. Set
T = [a, b]T. For every point p of T and for every positive real number
r, there exists an open subset W of T such that p ∈ W and g◦W ⊆
]g(p)− r, g(p) + r[ by [8, (39)]. Consider c being a real number such that
g(c) = d and a < c < b. �

(2) Let us consider real numbers a, b, and an open subset Z of R. Suppose
a < b and [a, b] ⊆ Z. Then there exist real numbers a1, b1 such that

(i) a1 < a, and

(ii) b < b1, and

(iii) a1 < b1, and

(iv) [a1, b1] ⊆ Z, and

(v) [a, b] ⊆ ]a1, b1[.
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2. Arc Length Parametrization

Let us consider real numbers a, b and partial functions x, y from R to R.
Now we state the propositions:

(3) Suppose a < b and x is differentiable and y is differentiable and [a, b] ⊆
domx and [a, b] ⊆ dom y and x′�domx is continuous and y′�dom y is conti-
nuous and for every real number t such that t ∈ domx ∩ dom y holds
0 < x′(t)2 + y′(t)2. Then there exist real numbers a1, b1 and there exists
a partial function l from R to R and there exists an open subset Z of R
such that a1 < a and b < b1 and Z = domx∩dom y and [a, b] ⊆ ]a1, b1[ and
[a1, b1] ⊆ Z and dom l = Z and for every real number t such that t ∈ [a1, b1]

holds l(t) =
t∫

a1

(�
1
2 ) · (x′�domx · x′�domx + y′�dom y · y′�dom y)(x)dx and l is dif-

ferentiable on ]a1, b1[ and l′�]a1,b1[ = (�
1
2 ) · (x′�domx · x′�domx + y′�dom y ·

y′�dom y)�]a1, b1[ and l′�]a1,b1[ is continuous and for every real number t such

that t ∈ ]a1, b1[ holds l is differentiable in t and l′(t) = (x′(t)2+y′(t)2)
1
2 and

for every real number t such that t ∈ [a, b] holds (ArcLenP(x, y, a, b))(t) =
l(t)− l(a).
Proof: Reconsider Z1 = domx, Z2 = dom y as an open subset of R. Re-
consider Z = Z1∩Z2 as an open subset of R. Consider d1 being a real num-
ber such that 0 < d1 and ]a−d1, a+d1[ ⊆ Z. Consider d2 being a real num-
ber such that 0 < d2 and ]b− d2, b+ d2[ ⊆ Z. Reconsider d = min(d1, d2)
as a real number. Set a1 = a − d

2 . Set b1 = b + d
2 . [a1, b1] ⊆ Z. Define

F(real number) = (

$1∫
a1

(�
1
2 ) · (x′�domx · x′�domx + y′�dom y · y′�dom y)(x)dx)(∈

R). Consider l0 being a function from R into R such that for every element t

of R, l0(t) = F(t). For every real number t, l0(t) =
t∫

a1

(�
1
2 ) · (x′�domx · x′�domx

+y′�dom y · y′�dom y)(x)dx. Set l = l0�Z. Set X2 = (�
1
2 ) · (x′�domx · x′�domx +

y′�dom y · y′�dom y). For every real number t such that t ∈ [a1, b1] holds

l(t) =
t∫

a1

X2(x)dx. For every real number t such that t ∈ [a, b] holds

(ArcLenP(x, y, a, b))(t) = l(t) − l(a) by [6, (10), (11)], [7, (17)]. For eve-
ry real number t such that t ∈ ]a1, b1[ holds l is differentiable in t and
l′(t) = (x′(t)2 + y′(t)2)

1
2 by [7, (28)]. �

(4) Suppose a < b and x is differentiable and y is differentiable and [a, b] ⊆
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domx and [a, b] ⊆ dom y and x′�domx is continuous and y′�dom y is conti-
nuous and for every real number t such that t ∈ domx ∩ dom y holds
0 < x′(t)2 + y′(t)2. Then there exist real numbers a1, b1 and there exists
a one-to-one partial function L from R to R such that a1 < a and b < b1
and [a1, b1] ⊆ domx∩dom y and domL = ]a1, b1[ and for every real number

t such that t ∈ ]a1, b1[ holds L(t) =
t∫

a1

(�
1
2 ) · (x′�domx · x′�domx + y′�dom y·

y′�dom y)(x)dx and for every real number t such that t ∈ [a, b] holds (ArcLen-

P(x, y, a, b))(t) = L(t)−L(a) and L is increasing and L�[a, b] is continuous
and L◦[a, b] = [L(a), L(b)] and for every real number t such that t ∈ ]a1, b1[
holds L is differentiable in t and L is differentiable on ]a1, b1[ and for every
real number t such that t ∈ ]a1, b1[ holds L′(t) = (x′(t)2+y′(t)2)

1
2 and L−1

is differentiable on dom(L−1) and for every real number t such that t ∈
dom(L−1) holds (L−1)′(t) = 1

L′((L−1)(t)) and L−1 is continuous and for eve-

ry real number s such that s ∈ rngL holds x·(L−1) is differentiable in s and
y · (L−1) is differentiable in s and (x · (L−1))′(s) = x′((L−1)(s)) · (L−1)′(s)
and (y · (L−1))′(s) = y′((L−1)(s)) · (L−1)′(s) and (x · (L−1))′(s)2 + (y ·
(L−1))′(s)2 = 1 and (x·(L−1))′�dom(x·(L−1)) = x′�domx ·(L−1)·(L−1)′�dom(L−1)
and (y · (L−1))′�dom(y·(L−1)) = y′�dom y · (L−1) · (L−1)′�dom(L−1) and

(L−1)′�dom(L−1) = 1
L′�domL·(L−1)

and (L−1)′�dom(L−1) is continuous and [L(a),

L(b)] ⊆ dom(L−1) and [L(a), L(b)] ⊆ dom(x · (L−1)) and [L(a), L(b)] ⊆
dom(y · (L−1)) and [L(a), L(b)] ⊆ rngL and dom(x · (L−1)) = dom(L−1)
and dom(y · (L−1)) = dom(L−1) and x · (L−1) is differentiable and y ·
(L−1) is differentiable and (x · (L−1))′�dom(x·(L−1)) is continuous and (y ·
(L−1))′�dom(y·(L−1)) is continuous and for every real number s such that
s ∈ dom(x·(L−1))∩dom(y·(L−1)) holds (x·(L−1))′(s)2+(y·(L−1))′(s)2 = 1

and
b∫
a

(y · x′�domx)(x)dx =

L(b)∫
L(a)

(y · (L−1) · (x · (L−1))′�dom(x·(L−1)))(x)dx.

Proof: Consider a1, b1 being real numbers, l being a partial function
from R to R, Z being an open subset of R such that a1 < a and b <

b1 and Z = domx ∩ dom y and [a, b] ⊆ ]a1, b1[ and [a1, b1] ⊆ Z and
dom l = Z and for every real number t such that t ∈ [a1, b1] holds l(t) =
t∫

a1

(�
1
2 ) · (x′�domx · x′�domx + y′�dom y · y′�dom y)(x)dx and l is differentiable on

]a1, b1[ and l′�]a1,b1[ = (�
1
2 ) · (x′�domx · x′�domx + y′�dom y · y′�dom y)�]a1, b1[ and

l′�]a1,b1[ is continuous and for every real number t such that t ∈ ]a1, b1[
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holds l is differentiable in t and l′(t) = (x′(t)2+y′(t)2)
1
2 and for every real

number t such that t ∈ [a, b] holds (ArcLenP(x, y, a, b))(t) = l(t) − l(a).
Set L = l�]a1, b1[. For every real number t such that t ∈ ]a1, b1[ holds

L(t) =
t∫

a1

(�
1
2 ) · (x′�domx · x′�domx + y′�dom y · y′�dom y)(x)dx. For every real

number t such that t ∈ [a, b] holds (ArcLenP(x, y, a, b))(t) = L(t)− L(a).
For every real number t such that t ∈ ]a1, b1[ holds 0 < l′(t). For every
real number t such that t ∈ ]a1, b1[ holds L′(t) = (x′(t)2 + y′(t)2)

1
2 . For

every real number t such that t ∈ ]a1, b1[ holds 0 < L′(t). For every real
number s such that s ∈ rngL holds x · (L−1) is differentiable in s and
y · (L−1) is differentiable in s and (x · (L−1))′(s) = x′((L−1)(s)) · (L−1)′(s)
and (y · (L−1))′(s) = y′((L−1)(s)) · (L−1)′(s) and (x · (L−1))′(s)2 + (y ·
(L−1))′(s)2 = 1. Set L1 = (L−1)′�dom(L−1). L

′
�domL · (L−1)−1({0}) = ∅.

For every real number t such that t ∈ domL1 holds L1 is continuous in
t. For every object s, s ∈ L◦[a, b] iff s ∈ [L(a), L(b)]. Set e1 = a−a1

2 . Set
e2 = b1−b

2 . Set a2 = a1 + e1. Set b2 = b1 − e2. a2 < a and a2 < b < b2
and a2 < b2 and [a, b] ⊆ ]a2, b2[ and [a2, b2] ⊆ ]a1, b1[. Define FX (real

number) = (

$1∫
a2

(y · x′�domx)(x)dx)(∈ R). Consider F0 being a function from

R into R such that for every element t of R, F0(t) = FX (t). For every real

number t, F0(t) =
t∫

a2

(y · x′�domx)(x)dx. Set F = F0�[a2, b2]. For every real

number t such that t ∈ ]a2, b2[ holds F (t) =
t∫

a2

(y · x′�domx)(x)dx. [a2, b2] ⊆

dom(y · x′�domx). [a2, b] ⊆ dom(y · x′�domx). For every real number t such
that t ∈ ]a2, b2[ holds F is differentiable in t and F ′(t) = (y · x′�domx)(t).
[L(a), L(b)] ⊆ ]L(a2), L(b2)[. Set G = F · (L−1�]L(a2), L(b2)[). For eve-
ry object s, s ∈ L◦[a2, b2] iff s ∈ [L(a2), L(b2)]. ]L(a2), L(b2)[ ⊆ rngL.
rng(L−1�]L(a2), L(b2)[) ⊆ domF . For every real number t such that t ∈
]L(a2), L(b2)[ holds G is differentiable in t and (L−1�]L(a2), L(b2)[)(t) ∈
]a2, b2[ and G′(t) = F ′((L−1�]L(a2), L(b2)[)(t)) · (L−1�]L(a2), L(b2)[)′(t).
For every object s such that s ∈ domG′�]L(a2),L(b2)[ holdsG′�]L(a2),L(b2)[(s) =
((y · (L−1) · (x · (L−1))′�dom(x·(L−1)))�]L(a2), L(b2)[)(s). For every real num-
ber s such that s ∈ dom(x · (L−1))∩dom(y · (L−1)) holds (x · (L−1))′(s)2+
(y · (L−1))′(s)2 = 1. �
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3. Parametrization-Independent Isoperimetric Inequality

Now we state the proposition:

(5) Let us consider real numbers a, b, l, and partial functions x, y from R to
R. Suppose a < b and (ArcLenP(x, y, a, b))(b) = l and y(a) = 0 and y(b) =
0 and x is differentiable and y is differentiable and [a, b] ⊆ domx and
[a, b] ⊆ dom y and x′�domx is continuous and y′�dom y is continuous and for
every real number t such that t ∈ domx∩ dom y holds 0 < x′(t)2+ y′(t)2.
Then

(i)
b∫
a

(y · x′�domx)(x)dx ¬
1
2 · l
2

π
, and

(ii)
b∫
a

(y · x′�domx)(x)dx =
1
2 · l
2

π
iff for every real number s such that

s ∈ [a, b] holds y(s) = l
π · (the function sin)(π·(ArcLenP(x,y,a,b))(s)l ) and

x(s) = l
π · (−(the function cos)(π·(ArcLenP(x,y,a,b))(s)l ) + (the function

cos)(0) + π
l · x(a)) or for every real number s such that s ∈ [a, b]

holds y(s) = − l
π · (the function sin)(π·(ArcLenP(x,y,a,b))(s)l ) and x(s) =

l
π · ((the function cos)(π·(ArcLenP(x,y,a,b))(s)l )− (the function cos)(0) +
π
l · x(a)).

The theorem is a consequence of (4).
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