REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/17785
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorNakasho, Kazuhisa-
dc.contributor.authorShidama, Yasunari-
dc.date.accessioned2025-01-09T11:57:40Z-
dc.date.available2025-01-09T11:57:40Z-
dc.date.issued2024-
dc.identifier.citationFormalized Mathematics, Volume 32, Issue 1, Pages 187–194pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/17785-
dc.description.abstractIn this article we present the Mizar proof of the isoperimetric theorem (one of the theorems listed among Wiedijk’s Top 100 mathematical theorems), inspired by Peter D. Lax’s paper “A Short Path to the Shortest Path”. Using relatively simple formal apparatus of continuous and differentiable functions, we show that among all curves of fixed length connecting two points on the x-axis, a semicircle is the curve which maximizes the area between the curve and the x-axis.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectisoperimetric theorempl
dc.subjectcalculus of variationspl
dc.subjectparametric curvepl
dc.titleClassical Isoperimetric Theorempl
dc.typeArticlepl
dc.rights.holder© 2024 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2024-0015-
dc.description.AffiliationKazuhisa Nakasho - Yamaguchi University, Yamaguchi, Japanpl
dc.description.AffiliationYasunari Shidama - Karuizawa Hotch 244-, Nagano, Japanpl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesViktor Bl˚asjö. The isoperimetric problem. The American Mathematical Monthly, 112(6): 526–566, 2005.pl
dc.description.referencesNoboru Endou. Differentiation on interval. Formalized Mathematics, 31(1):9–21, 2023. doi:10.2478/forma-2023-0002.pl
dc.description.referencesNoboru Endou and Yasunari Shidama. Multidimensional measure space and integration. Formalized Mathematics, 31(1):181–192, 2023. doi:10.2478/forma-2023-0017.pl
dc.description.referencesNoboru Endou and Yasunari Shidama. Integral of continuous functions of two variables. Formalized Mathematics, 31(1):309–324, 2023. doi:10.2478/forma-2023-0025.pl
dc.description.referencesNoboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281–284, 2001.pl
dc.description.referencesNoboru Endou, Yasunari Shidama, and Masahiko Yamazaki. Integrability and the integral of partial functions from R into R. Formalized Mathematics, 14(4):207–212, 2006. doi:10.2478/v10037-006-0023-y.pl
dc.description.referencesJohn Harrison. The HOL Light system reference. 2023. http://www.cl.cam.ac.uk/~jrh13/hol-light/reference.pdf.pl
dc.description.referencesJohn Harrison. The isoperimetric inequality. 2023. Available online at https://github.com/jrh13/hol-light/blob/master/100/isoperimetric.ml.pl
dc.description.referencesAndreas Hehl. The isoperimetric inequality. Proseminar Curves and Surfaces, Universitaet Tuebingen, Tuebingen, 2013.pl
dc.description.referencesPeter David Lax. A short path to the shortest path. The American Mathematical Monthly, 102(2):158–159, 1995.pl
dc.description.referencesRobert Osserman. The isoperimetric inequality. Bulletin of American Mathematical Monthly, 6(84):1182–1238, 1978.pl
dc.description.referencesAlan Siegel. An isoperimetric theorem in plane geometry. Discrete and Computational Geometry, 29(2):239–255, 2003. doi:10.1007/s00454-002-2809-1.pl
dc.description.referencesMarten Straatsma. Towards formalising the isoperimetric theorem. BSc thesis, Radboud University Nijmegen, 2022.pl
dc.description.referencesFreek Wiedijk. Formalizing 100 theorems. Available online at http://www.cs.ru.nl/~freek/100/.pl
dc.identifier.eissn1898-9934-
dc.description.volume32pl
dc.description.issue1pl
dc.description.firstpage187pl
dc.description.lastpage194pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0003-1110-4342-
Występuje w kolekcji(ach):Formalized Mathematics, 2024, Volume 32, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
Classical-Isoperimetric-Theorem.pdf276,78 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons