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Summary. In this article we present the Mizar proof of the isoperimetric
theorem (one of the theorems listed among Wiedijk’s Top 100 mathematical the-
orems), inspired by Peter D. Lax’s paper “A Short Path to the Shortest Path”.
Using relatively simple formal apparatus of continuous and differentiable func-
tions, we show that among all curves of fixed length connecting two points on
the x-axis, a semicircle is the curve which maximizes the area between the curve
and the x-axis.
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Introduction

In this article we formalize in Mizar [1], [2] the isoperimetric theorem, inspi-
red by Peter D. Lax’s “A Short Path to the Shortest Path” [12]. Notably, Lax’s
proof is remarkably concise, spanning just one page, demonstrating the elegance
of his approach.

Our formalization begins by establishing fundamental properties of continu-
ous and differentiable functions (although most of useful properties are already
present in the Mizar Mathematical Library, for more advanced recent results in
this area see [4], [5], [6]), including theorems on integrals and differentiation ru-
les. Building upon these, it progresses to the proof of the isoperimetric theorem,
addressing the following question: Among all curves of fixed length connecting
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two points on the x-axis, which curve maximizes the area between the curve
and the x-axis? The formalization proves that for parametric curves (x(t), y(t))
with fixed length and endpoints on the x-axis, the integral

∫ π
0 y(t)x′(t) dt is ma-

ximized when the curve is a semicircle [14]. The historical background on the
isoperimetric theorem is detailed in [3] and [11].

This work represents the solution of the problem #43 of Freek Wiedijk’s
“Formalizing 100 Theorems” project [16], underscoring the significance of this
effort in the context of formalization of mathematics (compare the formal de-
velopment in HOL Light [9]: [10] and [15]). The survey of some implications of
the theorem is contained in [13].

1. Foundations of Continuity and Integration

From now on a, b, r denote real numbers, A denotes a non empty set, X,
x denote sets, f , g, F , G denote partial functions from R to R, and n denotes
an element of N. Now we state the propositions:

(1) Let us consider real numbers a, b, C, and a partial function u from R
to R. Suppose a < b and [a, b] ⊆ domu and u is continuous and for every
real number t such that t ∈ ]a, b[ holds u(t) = C. Let us consider a real
number t. If t ∈ [a, b], then u(t) = C.

Proof: Define M(natural number) =
b−a
2
$1+1

(∈ R). Consider S4 being
a function from N into R such that for every element x of N, S4(x) =M(x).

For every natural number n, S4(n) =
b−a
2

n+1 . Consider S2 being a con-
stant function from N into R such that for every natural number x,
S2(x) = a. Set S0 = S2 + S4. rngS0 ⊆ ]a, b[. For every natural number n,
(u∗S0)(n) = C. For every objects x, y such that x, y ∈ dom(u∗S0) holds
(u∗S0)(x) = (u∗S0)(y). Consider S3 being a constant function from N into
R such that for every natural number x, S3(x) = b. Set S1 = S3 − S4.
rngS1 ⊆ ]a, b[. For every natural number n, (u∗S1)(n) = C. For every
objects x, y such that x, y ∈ dom(u∗S1) holds (u∗S1)(x) = (u∗S1)(y). For
every real number t such that t ∈ [a, b] holds u(t) = C. �

(2) Let us consider real numbers a, b, c, d, and a partial function f from R
to R. Suppose a ¬ b and c ¬ d and [a, b] ⊆ dom f and c, d ∈ [a, b] and
f�[a, b] is continuous and for every real number t such that t ∈ [c, d] holds

0 ¬ f(t). Then 0 ¬
d∫
c

f(x)dx.

Proof: For every object x such that x ∈ dom(f � [c, d]) holds (f �
[c, d])(x) = (|f | � [c, d])(x). �
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(3) Let us consider real numbers a, b, c, d, and partial functions f , g from R
to R. Suppose a ¬ b and c ¬ d and [a, b] ⊆ dom f and [a, b] ⊆ dom g and c,
d ∈ [a, b] and f�[a, b] is continuous and g�[a, b] is continuous and for every

real number t such that t ∈ [c, d] holds f(t) ¬ g(t). Then
d∫
c

f(x)dx ¬

d∫
c

g(x)dx. The theorem is a consequence of (2).

(4) Let us consider real numbers a, b, c, d, e, and a partial function f from
R to R. Suppose a ¬ b and c ¬ d and c, d ∈ [a, b] and [a, b] ⊆ dom f and
f�[a, b] is continuous and for every real number t such that t ∈ [c, d] holds

e ¬ f(t). Then e · (d− c) ¬
d∫
c

f(x)dx.

Proof: Set g = R 7−→ e. For every real number t such that t ∈ [c, d] holds

g(t) ¬ f(t).
d∫
c

g(x)dx ¬
d∫
c

f(x)dx. �

(5) Let us consider real numbers a, b, c, d, e, and a partial function f from R
to R. Suppose 0 < e and a ¬ b and c < d and c, d ∈ [a, b] and [a, b] ⊆ dom f

and f�[a, b] is continuous and for every real number t such that t ∈ [a, b]
holds 0 ¬ f(t) and for every real number t such that t ∈ [c, d] holds

e ¬ f(t). Then 0 < e · (d− c) ¬
b∫
a

f(x)dx. The theorem is a consequence

of (2) and (4).

(6) Let us consider real numbers a, b, and a partial function f from R to
R. Suppose a ¬ b and [a, b] ⊆ dom f and f�[a, b] is continuous and for
every real number t such that t ∈ [a, b] holds 0 ¬ f(t) and there exists
a real number t0 such that t0 ∈ ]a, b[ and 0 < f(t0). Then there exist real
numbers d, c, e such that

(i) 0 < e, and

(ii) c < d, and

(iii) c, d ∈ [a, b], and

(iv) 0 < e · (d− c) ¬
b∫
a

f(x)dx.

Proof: Consider t0 being a real number such that t0 ∈ ]a, b[ and 0 <

f(t0). Set e = f(t0)
2 . Consider s0 being a real number such that 0 < s0
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and for every real number t such that t ∈ [a, b] and |t − t0| < s0 holds
|f(t)− f(t0)| < e. Set s = s0

2 . Reconsider s2 = min(t0− a, b− t0) as a real
number. Reconsider s3 = min(s, s2) as a real number. Set c = t0 − s3. Set
d = t0 + s3. Set e0 = f(t0)

2 . For every real number t such that t ∈ [c, d]
holds e0 ¬ f(t). �

(7) Let us consider a partial function f from R to R, and real numbers a,
b. Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous. Then there
exists a sequence I of real numbers such that

(i) for every natural number n, I(n) =

b− 1
n+1∫

a+ 1
n+1

f(x)dx, and

(ii) I is convergent, and

(iii) lim I =
b∫
a

f(x)dx.

Proof: Define M(natural number) = (

b− 1
$1+1∫

a+ 1
$1+1

f(x)dx)(∈ R). Consider I

being a function from N into R such that for every element x of N, I(x) =

M(x). For every natural number n, I(n) =

b− 1
n+1∫

a+ 1
n+1

f(x)dx. Set X = [a, b].

Consider t1, t2 being real numbers such that t1, t2 ∈ dom(|f |�X) and
(|f |�X)(t1) = sup rng(|f |�X) and (|f |�X)(t2) = inf rng(|f |�X). Set K =
(|f |�X)(t1). For every real number t such that t ∈ X holds |f(t)| ¬ K.

Set L =
b∫
a

f(x)dx. For every real number p such that 0 < p there exists

a natural number n such that for every natural number m such that n ¬ m
holds |I(m)− L| < p by [7, (17)], [8, (10), (11)]. �

2. Differentiation Rules and Properties

Now we state the propositions:

(8) Let us consider an open subset Z of R. Then

(i) the function sin is differentiable on Z, and

(ii) (the function sin)′�Z = (the function cos)�Z, and
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(iii) the function cos is differentiable on Z, and

(iv) (the function cos)′�Z = −(the function sin)�Z.

(9) Let us consider a partial function f from R to R. Then f + f = 2 · f .

Let us consider a partial function f from R to R, a subset Z of R, and a real
number x. Now we state the propositions:

(10) If Z is open and x ∈ Z and Z ⊆ dom f , then f�Z is differentiable in x

iff f is differentiable in x.

(11) If Z is open and x ∈ Z and Z ⊆ dom f and f is differentiable in x, then
f ′(x) = (f�Z)′(x). The theorem is a consequence of (10).

(12) Let us consider a partial function f from R to R, and subsets X, Z of
R. Suppose Z is open and Z ⊆ X and f is differentiable on X. Then
f ′�Z = f ′�X�Z.
Proof: For every object x such that x ∈ dom(f ′�X�Z) holds (f ′�X�Z)(x) =
f ′�Z(x). �

(13) Let us consider real numbers a, b, and a partial function u from R to
R. Suppose a < b and u is differentiable on ]a, b[ and domu = [a, b] and
u is continuous and for every real number t such that t ∈ ]a, b[ holds
u′�]a,b[(t) = 0. Then there exists a real number C such that for every real
number t such that t ∈ [a, b] holds u(t) = C. The theorem is a consequence
of (1).

3. Properties of Parametric Curves and Area Calculations

Now we state the proposition:

(14) Let us consider partial functions x, y from R to R, and an open subset
Z of R. Suppose x is differentiable and y is differentiable and [0, π] ⊆ Z ⊆
domx and Z ⊆ dom y and y′�Z is continuous and x′�Z is continuous and
for every real number t such that t ∈ Z holds x′�Z(t)2 + y′�Z(t)2 = 1 and
y(0) = 0 and y(π) = 0.

Then there exists a partial function u from R to R and there exists
a sequence F of real numbers such that u is differentiable on ]0, π[ and
u′�]0,π[ is continuous and domu = [0, π] and u is continuous and y�[0, π] =
(u·(the function sin))�[0, π] and for every real number t such that t ∈ ]0, π[
holds y′(t) = u′(t)·(the function sin)(t)+u(t)·(the function cos)(t) and for

every natural number n, F (n) =

π− 1
n+1∫
1

n+1

((AffineMap(0, 1))− ((u′�]0,π[ · u
′
�]0,π[)

·(the function sin)) · (the function sin))(x)dx and F is convergent and
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π∫
0

(y · x′�Z)(x)dx ¬ 1
2
·(

π∫
0

(y · y + x′�Z · x′�Z)(x)dx) and y·y+x′�Z ·x′�Z = y·y+

(AffineMap(0, 1))−y′�Z ·y′�Z and
π∫
0

(y · y + x′�Z · x′�Z)(x)dx =
π∫
0

(y · y + (Af-

fineMap(0, 1))− y′�Z · y′�Z)(x)dx and
π∫
0

(y · y + (AffineMap(0, 1))− y′�Z ·

y′�Z)(x)dx = limF .

4. Formalization of the Isoperimetric Theorem

Now we state the propositions:

(15) Let us consider partial functions x, y from R to R, and an open subset
Z of R. Suppose x is differentiable and y is differentiable and [0, π] ⊆ Z ⊆
domx and Z ⊆ dom y and x′�Z is continuous and y′�Z is continuous and
for every real number t such that t ∈ Z holds x′�Z(t)2 + y′�Z(t)2 = 1 and
y(0) = 0 and y(π) = 0. Then

(i)
π∫
0

(y · x′�Z)(x)dx ¬ 1
2
· π, and

(ii)
π∫
0

(y · x′�Z)(x)dx =
1
2
·π iff for every real number t such that t ∈ [0, π]

holds y(t) = (the function sin)(t) and x(t) = −(the function cos)(t)+
(the function cos)(0) + x(0) or for every real number t such that t ∈
[0, π] holds y(t) = −(the function sin)(t) and x(t) = (the function
cos)(t)− (the function cos)(0) + x(0).

(16) Let us consider partial functions x, y from R to R. Suppose x is diffe-
rentiable and y is differentiable and [0, π] ⊆ domx and [0, π] ⊆ dom y and
x′�domx is continuous and y′�dom y is continuous and for every real number
t such that t ∈ domx ∩ dom y holds x′(t)2 + y′(t)2 = 1 and y(0) = 0 and
y(π) = 0. Then

(i)
π∫
0

(y · x′�domx)(x)dx ¬ 1
2
· π, and

(ii)
π∫
0

(y · x′�domx)(x)dx =
1
2
· π iff for every real number t such that t ∈

[0, π] holds y(t) = (the function sin)(t) and x(t) = −(the function cos)
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(t)+(the function cos)(0)+x(0) or for every real number t such that
t ∈ [0, π] holds y(t) = −(the function sin)(t) and x(t) = (the function
cos)(t)− (the function cos)(0) + x(0).

The theorem is a consequence of (12).

(17) Let us consider partial functions x, y from R to R, and a real num-
ber L. Suppose 0 < L and x is differentiable and y is differentiable and
[0, π] ⊆ domx and [0, π] ⊆ dom y and x′�domx is continuous and y′�dom y is
continuous and for every real number t such that t ∈ domx∩ dom y holds
x′(t)2 + y′(t)2 = L

π and y(0) = 0 and y(π) = 0. Then

(i)
π∫
0

(y · x′�domx)(x)dx ¬ 1
2
· L, and

(ii)
π∫
0

(y · x′�domx)(x)dx =
1
2
· L iff for every real number t such that t ∈

[0, π] holds y(t) = (the function sin)(t)√
π
L

and x(t) = − (the function cos)(t)√
π
L

+

(the function cos)(0)√
π
L

+ x(0) or for every real number t such that t ∈

[0, π] holds y(t) = − (the function sin)(t)√
π
L

and x(t) = (the function cos)(t)√
π
L

−
(the function cos)(0)√

π
L

+ x(0).

Proof: Set k =
√

π
L . Set x1 = k · x. Set y1 = k · y. For every real

number t such that t ∈ domx1 ∩ dom y1 holds x1
′(t)2 + y1

′(t)2 = 1.
π∫
0

(y1 · x1′�domx1)(x)dx ¬ 1
2
·π and (

π∫
0

(y1 · x1′�domx1)(x)dx =
1
2
·π iff for eve-

ry real number t such that t ∈ [0, π] holds y1(t) = (the function sin)(t) and
x1(t) = −(the function cos)(t) + (the function cos)(0) + x1(0) or for every
real number t such that t ∈ [0, π] holds y1(t) = −(the function sin)(t) and
x1(t) = (the function cos)(t)− (the function cos)(0) + x1(0)).
π∫
0

(y1 · x1′�domx1)(x)dx =
1
2
· π iff

π∫
0

(y · x′�domx)(x)dx =
1
2
· L. For eve-

ry real number t such that t ∈ [0, π] holds y1(t) = (the function sin)(t)
and x1(t) = −(the function cos)(t) + (the function cos)(0) + x1(0) iff for
every real number t such that t ∈ [0, π] holds y(t) = (the function sin)(t)

k

and x(t) = − (the function cos)(t)k + (the function cos)(0)
k + x(0). For every real

number t such that t ∈ [0, π] holds y1(t) = −(the function sin)(t) and
x1(t) = (the function cos)(t) − (the function cos)(0) + x1(0) iff for every
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real number t such that t ∈ [0, π] holds y(t) = − (the function sin)(t)k and

x(t) = (the function cos)(t)
k − (the function cos)(0)k + x(0). �
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