Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/17770
Pełny rekord metadanych
Pole DC | Wartość | Język |
---|---|---|
dc.contributor.author | Watase, Yasushige | - |
dc.date.accessioned | 2024-12-31T07:35:15Z | - |
dc.date.available | 2024-12-31T07:35:15Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Formalized Mathematics, Volume 32, Issue 1, Pages 121–131 | pl |
dc.identifier.issn | 1426-2630 | - |
dc.identifier.uri | http://hdl.handle.net/11320/17770 | - |
dc.description.abstract | In this article we formalize the main part of Hurwitz’s proof of the transcendence of the number e in the Mizar language. The previous article prepared the necessary definitions and lemmas. Here we deal with main crucial steps of the proof. | pl |
dc.language.iso | en | pl |
dc.publisher | DeGruyter Open | pl |
dc.rights | Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) | pl |
dc.rights.uri | https://creativecommons.org/licenses/by-sa/3.0/ | pl |
dc.subject | transcendental number | pl |
dc.subject | algebraic number | pl |
dc.subject | ring of polynomials | pl |
dc.title | Formal Proof of Transcendence of the Number e. Part II | pl |
dc.type | Article | pl |
dc.rights.holder | © 2024 The Author(s) | pl |
dc.rights.holder | CC BY-SA 3.0 license | pl |
dc.identifier.doi | 10.2478/forma-2024-0009 | - |
dc.description.Affiliation | Suginami-ku Matsunoki 6, 3-21 Tokyo, Japan | pl |
dc.description.references | Alan Baker. Transcendental Number Theory. Cambridge University Press, 1990. | pl |
dc.description.references | Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3- 319-20614-1. doi:10.1007/978-3-319-20615-8_17. | pl |
dc.description.references | Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6. | pl |
dc.description.references | Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub. Formal proofs of transcendence for e and π as an application of multivariate and symmetric polynomials. In Jeremy Avigad and Adam Chlipala, editors, Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pages 76–87. ACM, 2016. doi:10.1145/2854065.2854072. | pl |
dc.description.references | Jesse Bingham. Formalizing a proof that e is transcendental. Journal of Formalized Reasoning, 4:71–84, 2011. | pl |
dc.description.references | Manuel Eberl. The transcendence of e. Archive of Formal Proofs, 2017. https://isa-afp.org/entries/E_Transcendental.html, Formal proof development. | pl |
dc.description.references | Matsusaburo Fujiwara. Algebra vol 2, Japanese. Uchida Rokakuho Publishing Co., Ltd, 1st edition, 1929. | pl |
dc.description.references | Adolf Hurwitz. Beweis der Transcendenz der Zahl e. Mathematische Annalen, 43:220–221, 1893. | pl |
dc.description.references | Artur Korniłowicz. Elementary number theory problems. Part VIII. Formalized Mathematics, 31(1):87–100, 2023. doi:10.2478/forma-2023-0009. | pl |
dc.description.references | Artur Korniłowicz and Christoph Schwarzweller. The first isomorphism theorem and other properties of rings. Formalized Mathematics, 22(4):291–301, 2014. doi:10.2478/forma-2014-0029. | pl |
dc.description.references | Artur Korniłowicz, Adam Naumowicz, and Adam Grabowski. All Liouville numbers are transcendental. Formalized Mathematics, 25(1):49–54, 2017. doi:10.1515/forma-2017-0004. | pl |
dc.description.references | Serge Lang. Introduction to Transcendental Numbers. Addison-Wesley Pub. Co., 1966. | pl |
dc.description.references | Norman D. Megill and David A. Wheeler. Metamath: A Computer Language for Mathematical Proofs. Lulu Press, Morrisville, North Carolina, 2019. | pl |
dc.description.references | Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461–470, 2001. | pl |
dc.description.references | Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming language. In Automated Deduction – CADE 28: 28th International Conference on Automated Deduction, Virtual Event, July 12–15, 2021, Proceedings, pages 625–635, Berlin, Heidelberg, 2021. Springer-Verlag. doi:10.1007/978-3-030-79876-5_37. | pl |
dc.description.references | Karol Pąk. Eigenvalues of a linear transformation. Formalized Mathematics, 16(4):289–295, 2008. doi:10.2478/v10037-008-0035-x. | pl |
dc.description.references | Christoph Schwarzweller. On roots of polynomials over F[X]/hpi. Formalized Mathematics, 27(2):93–100, 2019. doi:10.2478/forma-2019-0010. | pl |
dc.description.references | Christoph Schwarzweller. Normal extensions. Formalized Mathematics, 31(1):121–130, 2023. doi:10.2478/forma-2023-0011. | pl |
dc.description.references | Yasushige Watase. Formal proof of transcendence of the number e. Part I. Formalized Mathematics, 32(1):111–120, 2024. doi:10.2478/forma-2024-0008. | pl |
dc.description.references | Yasushige Watase. Derivation of commutative rings and the Leibniz formula for power of derivation. Formalized Mathematics, 29(1):1–8, 2021. doi:10.2478/forma-2021-0001. | pl |
dc.description.references | Freek Wiedijk. Formalizing 100 theorems. Available online at http://www.cs.ru.nl/~freek/100/. | pl |
dc.identifier.eissn | 1898-9934 | - |
dc.description.volume | 32 | pl |
dc.description.issue | 1 | pl |
dc.description.firstpage | 121 | pl |
dc.description.lastpage | 131 | pl |
dc.identifier.citation2 | Formalized Mathematics | pl |
Występuje w kolekcji(ach): | Formalized Mathematics, 2024, Volume 32, Issue 1 |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
Formal-Proof-of-Transcendence-of-the-Number-e-Part-II.pdf | 333,49 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL