REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/17755
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorCoghetto, Roland-
dc.date.accessioned2024-12-17T10:23:19Z-
dc.date.available2024-12-17T10:23:19Z-
dc.date.issued2024-
dc.identifier.citationFormalized Mathematics, Volume 32, Issue 1, Pages 77–92pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/17755-
dc.description.abstractThis paper deals with the notions of U-small set, U-small ca tegory, and U-locally small category (U is non-empty Grothendieck universe). We reuse the first Mizar formalization of categories contained in CAT_* series of Mizar articles in order to show the expressive power of the Tarski-Grothendieck set theory (which is the base for the Mizar Mathematical Library) in this area. We encode parts of SGA 4 by Nicolas Bourbaki.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectTarski-Grothendieck set theorypl
dc.subjectGrothendieck universepl
dc.subjectU-small categorypl
dc.subjectU-locally small categorypl
dc.titleU-Small and U-Locally Small Categoriespl
dc.typeArticlepl
dc.rights.holder© 2024 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2024-0006-
dc.description.Affiliationcafr-MSA2P asbl, Rue de la Brasserie 5, 7100 La Louvi`ere, Belgiumpl
dc.description.referencesMichael Artin, Alexander Grothendieck, and Jean-Louis Verdier. Th´eorie des topos et cohomologie ´etale des sch´emas. Tome 1: Th´eorie des topos (expos´es i `a iv). In S´eminaire de G´eom´etrie Alg´ebrique du Bois Marie, 1963/64, SGA 4, volume 269 of Lecture Notes in Mathematics. Springer, 1972.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesChad E. Brown and Karol Pąk. A tale of two set theories. In Cezary Kaliszyk, Edwin Brady, Andrea Kohlhase, and Claudio Sacerdoti Coen, editors, Intelligent Computer Mathematics – 12th International Conference, CICM 2019, CIIRC, Prague, Czech Republic, July 8-12, 2019, Proceedings, volume 11617 of Lecture Notes in Computer Science, pages 44–60. Springer, 2019. doi:10.1007/978-3-030-23250-4_4.pl
dc.description.referencesCzesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409–420, 1990.pl
dc.description.referencesRoland Coghetto. Non-trivial universes and sequences of universes. Formalized Mathematics, 30(1):53–66, 2022. doi:10.2478/forma-2022-0005.pl
dc.description.referencesMasaki Kashiwara and Pierre Schapira. Categories and Sheaves, volume 332 of Grundleh ren der Mathematischen Wissenschaften. Springer, 2006. doi:10.1007/3-540-27950-4.pl
dc.description.referencesSaunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, Heidelberg, Berlin, 1971.pl
dc.description.referencesKarol Pąk. Grothendieck universes. Formalized Mathematics, 28(2):211–215, 2020. doi:10.2478/forma-2020-0018.pl
dc.description.referencesMarco Riccardi. Object-free definition of categories. Formalized Mathematics, 21(3): 193–205, 2013. doi:10.2478/forma-2013-0021.pl
dc.description.referencesEmily Riehl. Category Theory in Context. Courier Dover Publications, 2017.pl
dc.description.referencesZbigniew Semadeni and Antoni Wiweger. Wstęp do teorii kategorii i funktorów, volume 45 of Biblioteka Matematyczna. PWN, Warszawa, 1978.pl
dc.description.referencesAlfred Tarski. Uber unerreichbare Kardinalzahlen. ¨ Fundamenta Mathematicae, 30:68–89, 1938.pl
dc.description.referencesAlfred Tarski. On well-ordered subsets of any set. Fundamenta Mathematicae, 32:176–183, 1939.pl
dc.description.referencesAndrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathematics, 5(2):259–267, 1996.pl
dc.description.referencesN. H. Williams. On Grothendieck universes. Compositio Mathematica, 21(1):1–3, 1969.pl
dc.identifier.eissn1898-9934-
dc.description.volume32pl
dc.description.issue1pl
dc.description.firstpage77pl
dc.description.lastpage92pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0002-4901-0766-
Występuje w kolekcji(ach):Formalized Mathematics, 2024, Volume 32, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
USmall-and-ULocally-Small-Categories.pdf317,12 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons