REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/17711
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorKorniłowicz, Artur-
dc.date.accessioned2024-12-10T08:20:39Z-
dc.date.available2024-12-10T08:20:39Z-
dc.date.issued2024-
dc.identifier.citationFormalized Mathematics, Volume 32, Issue 1, Pages 47–63pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/17711-
dc.description.abstractThis paper continues the formalization of chosen problems defined in the book “250 Problems in Elementary Number Theory” by Wacław Sierpiński.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectnumber theorypl
dc.subjectprime numberpl
dc.subjectDiophantine equationpl
dc.titleElementary Number Theory Problems. Part XIV– Diophantine Equationspl
dc.typeArticlepl
dc.rights.holder© 2024 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2024-0004-
dc.description.AffiliationFaculty of Computer Science, University of Białystok, Polandpl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesEdward J. Barbeau. Pell’s Equation. Problem Books in Mathematics. Springer, 2003.pl
dc.description.referencesRobert D. Carmichael. Diophantine Analysis. New York, John Wiley & Sons, 1915.pl
dc.description.referencesAdam Grabowski. Elementary number theory problems. Part XII– primes in arithmetic progression. Formalized Mathematics, 31(1):277–286, 2023. doi:10.2478/forma-2023-0022.pl
dc.description.referencesAdam Grabowski and Christoph Schwarzweller. Revisions as an essential tool to maintain mathematical repositories. In M. Kauers, M. Kerber, R. Miner, and W. Windsteiger, editors, Towards Mechanized Mathematical Assistants. Lecture Notes in Computer Science, volume 4573, pages 235–249. Springer: Berlin, Heidelberg, 2007.pl
dc.description.referencesAdam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.pl
dc.description.referencesAndrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4): 573–577, 1997.pl
dc.description.referencesArtur Korniłowicz. Elementary number theory problems. Part IX. Formalized Mathematics, 31(1):161–169, 2023. doi:10.2478/forma-2023-0015.pl
dc.description.referencesArtur Korniłowicz and Adam Naumowicz. Elementary number theory problems. Part V. Formalized Mathematics, 30(3):229–234, 2022. doi:10.2478/forma-2022-0018.pl
dc.description.referencesArtur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179–186, 2004.pl
dc.description.referencesAdam Naumowicz. Dataset description: Formalization of elementary number theory in Mizar. In Christoph Benzm¨uller and Bruce R. Miller, editors, Intelligent Computer Mathematics– 13th International Conference, CICM 2020, Bertinoro, Italy, July 26–31, 2020, Proceedings, volume 12236 of Lecture Notes in Computer Science, pages 303–308. Springer, 2020. doi:10.1007/978-3-030-53518-6_22.pl
dc.description.referencesAndrzej Schinzel. Demonstration d’une cons´ equence de l’hypoth` ese de Goldbach. Compositio Mathematica, 14:74–76, 1959.pl
dc.description.referencesAndrzej Schinzel and Wacław Sierpiński. Sur certaines hypoth`eses concernant les nombres premiers. Acta Arithmetica, 4(3):185–208, 1958.pl
dc.description.referencesChristoph Schwarzweller. Modular integer arithmetic. Formalized Mathematics, 16(3): 247–252, 2008. doi:10.2478/v10037-008-0029-8.pl
dc.description.referencesWacław Sierpiński. Elementary Theory of Numbers. PWN, Warsaw, 1964.pl
dc.description.referencesWacław Sierpiński. 250 Problems in Elementary Number Theory. Elsevier, 1970.pl
dc.description.referencesWacław Sierpiński. Remarques sur le travail de M. J. W. S. Cassels «On a diophantine equation». Acta Arithmetica, 6(4):469–471, 1961.pl
dc.description.referencesLi Yan, Xiquan Liang, and Junjie Zhao. Gauss lemma and law of quadratic reciprocity. Formalized Mathematics, 16(1):23–28, 2008. doi:10.2478/v10037-008-0004-4.pl
dc.identifier.eissn1898-9934-
dc.description.volume32pl
dc.description.issue1pl
dc.description.firstpage47pl
dc.description.lastpage63pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0002-4565-9082-
Występuje w kolekcji(ach):Artykuły naukowe (WInf)
Formalized Mathematics, 2024, Volume 32, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
Elementary-Number-Theory-Problems-Part-XIV-Diophantine-Equations.pdf331,49 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons