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INTRODUCTION

In this paper, Problems 45 and 49 from section “Relatively prime numbers”,
120 and 131 from section “Prime and composite numbers”, 144, and 148-152
from section “Diophantine equations” of “250 Problems in Elementary Number
Theory” by Wactaw Sierpinski [16] are formalized, using the Mizar system [6],
[11].

In the preliminary section, we proved several properties about divisibility
and coprimeness of integers and absolute values of integers — in the process
of revision [5] they can be moved to earlier Mizar articles stored in the Mizar
Mathematical Library [I] and potentially used for possible generalizations of
theorems from naturals to integers.

In section “Chinese remainder theorem”, we defined functors representing

solutions of families of congruences satisfying conditions of the theorem — to
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prove the correctness conditions of the functors, we utilized adequate theorems
from “Modular Integer Arithmetic” (INT_6) by Christoph Schwarzweller [14].

Problem 49 concerns a proof (the idea was given originally by A. Schinzel
[12]) that for every positive integer m every even number 2k can be represented
as a difference of two positive integers relatively prime to m.

To construct such two positive integers, we defined a finite sequence Sierp49Fs
of m,k (KTEXed as Sierpinski49 finite sequence) for every positive natural m and
every natural k, and stated the required property in the following two forms (we
consider the finite sequence of naturally ordered prime divisors [4]):

theorem :: NUMBER14:54
for m being positive Nat, k being Nat
for S being Sierp49FS of m,k
for q being CR_Sequence st q = PrimeDivisorsFS(m)
ex a,b being positive Nat st 2*k = a-b &
a,m are_coprime & b,m are_coprime &
a = CRT(S,q) + Product(q) + 2*k & b = CRT(S,q) + Product(q);

and

theorem :: NUMBER14:55
for m being positive Nat, k being Nat
ex a,b being positive Nat st 2*k = a-b &
a,m are_coprime & b,m are_coprime;

Problem 131 searches all integers k& > 0 for which the sequence of consecutive
numbers k+1, k42, ..., k+10 contains a maximal number of primes. It is proven
that for k = 1, the segment contains five primes (2, 3, 5, 7, and 11), while for
other values of k, the number of primes in the sequences is less or equal to four.
Sierpinski leaves the question about the infinitude of the number of such k’s
open, but based on his own hypothesis given by A. Schinzel [13] gives rather
the affirmative answer to this question. In its most general form, Schinzel’s
hypothesis H is still an open problem.

Problem 144 is devoted to the infiniteness of the set of all solutions of the
equation 22 — Dy? = 22 in positive integers =, y, z such that (z,y) = 1 for
arbitrary non-zero integers D. The problem is well recognized in the literature
— see e.g. §8 in Carmichael’s classical handbook [3], including Pell’s equation
theory [2].

The proof given in the book is split into 2 cases that consider odd and even
numbers D separately using facts proven in [§]. Unfortunately, the proof of the
even case is based on an invalid equation and proposes incorrect solutions. The
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correct equation which leads to the proper solutions x = \%dy2+1|, z= |%dy2—1]
for y being positive even integers and D = 2 - d is

1 2 1 2
(4Dy2 + 1) —Dy? = (4Dy2 — 1)

Problem 149 stated in the book as: “Prove the theorem of Euler that the
equation 4xy — x —y = 22 has no solutions in positive integers x,y, z, and prove
that this equation has infinitely many solutions in negative integers x,y, z.” is
formalized in the article in two separate theorems. To prove the second part of
the problem, we defined the injective function exampleSierpinskil49, which
assigns triplets [—1, —5n? — 2n, —5n — 1] to every positive natural number and
showed that the range of the function is contained in the set of all possible
negative solutions of the equation 4zy — x —y = 22, which allows the conclusion
that the equation has infinitely many solutions in negative integers.

Problem 150 asks for an elementary proof (without using the theory of Pell’s
equation) of the infiniteness of the set of all solutions of the equation 22+ Dy? =
1 in positive integers « and y for positive D = m? + 1, while the proof presented
in the book solves the problem for the equation z? — Dy? = 1. We formalized
the later case.

The proof of Problem 151 given in Sierpinski’s book, was based again on the
original idea of A. Schinzel as shown in [17].

Problem 152 concerns finding all solutions of the equation

x Yy oz
—+=4+—-—=m
Yy oz oz
in relatively prime positive integers x, vy, z for every natural number m.

Even though the statement of the problem considers only positive integers
x, Yy, z, the proof given in the book solved the problem for all non-zero integers
x, y, and z. Then, we formulated the problem in three variants: we showed that

y o e . ) y B

§+;+§—31fandonly1f1:—y—z—1forpos1t1vex, Y, 25 %4—;%—%—3
ifand only if t =y =2=1or x =y = z = —1 if non-zero integers x, y, z are
allowed; and the equation has no solutions for m # 3.

To prove Problem 148, facts from [9] were heavily used. Proofs of other
problems are direct formalizations of solutions given in the book, following also
[15] in some places.
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1. PRELIMINARIES

From now on a, b, ¢, h denote integers, k, m, n denote natural numbers, i,
7, z denote integers, and p denotes a prime number.

Let a, b, ¢ be integers. One can verify that (a, b, c¢)(€ Z x Z x Z) reduces to
(a, b, c).

Let us consider real numbers a, b. Now we state the propositions:

1) If0<a<b,then |a| < |b].

2) Ifb<a<0, then |a| < [b].
Ifj;éOandz:%,thenzH.
i | j if and only if ¢ | |7].

w

ot

i | j if and only if |i] | j.

If p | 3", then p | i. The theorem is a consequence of (4).

A~~~ Y~~~ —~
—_— — — — Y " —

Let us consider natural numbers m, n. Suppose m | n - p. Then
(i) m | n, or

(ii) there exists a natural number z such that m = z - p and z | n.
(8) Let us consider integers m, n. Suppose m | n - p. Then

(i) m | n, or

(ii) there exists an integer z such that m = z-p and z | n.

The theorem is a consequence of (7) and (4).

(9) i and j are relatively prime if and only if || and |j| are relatively prime.
(10) ¢ and j are relatively prime if and only if |i| and j are relatively prime.
(11) ¢ and j are relatively prime if and only if —i and —j are relatively prime.
(12) 4 and j are relatively prime if and only if —i and j are relatively prime.

Let us consider integers ¢, j, k. Now we state the propositions:
(13) Ifi # 0, then if i | k and i - j and k are relatively prime, then ¢ = 1 or
1= —1.
(14) Ifi|j and ¢ and j are relatively prime, then i =1 or i = —1.
(15) If i |7, then j =0 (modi).
(16) Let us consider integers a, b, c. Suppose a # 0 and ¢ # 0 and a and ¢

are relatively prime and b and c are relatively prime. Then a - b and c are
relatively prime.

(17) Ifi =7 (mod2), then i is odd iff j is odd.
(18) If i =7 (mod?2), then i is even iff j is even.
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(19) Let us consider integers i, j, k. If i > 0 and j = k (mod ), then i | j iff
PrOOF: If i | j, then i | k. O
Let us consider objects a, b and a finite sequence f. Now we state the pro-
positions:
(20) 1, 2 € dom({a,b) " f).
(21) (i) ((a,0) " f)(1) = a, and
(i) ({a,b) ™ f)(2) = 0.
(22) If n € dom f, then n + 2 € dom({a,b) ™ f).
(23) If n € dom f, then ({a,b) ~ f)(n+2) = f(n).
(24) Let us consider a decreasing, real-valued finite sequence f.
Then min,, f = len f.
(25) Let us consider an increasing, real-valued finite sequence f.
Then max;, f = len f.

Let X be an included in a segment, real-membered set. Note that Sgm X is
increasing.

2. CHINESE REMAINDER THEOREM

Let f be a Chinese remainder, integer-valued finite sequence. Let us observe
that — f is Chinese remainder.

Let f be a Chinese remainder, integer-valued, non-empty finite sequence.
Observe that f - f is Chinese remainder.

Let a1, n1, ag, na be integers and x be an integer. We say that a1 =5, © =,
as if and only if

(Def. 1) 2 =a; (modn;) and & = ag (mod ny).
Now we state the propositions:

(26) Let us consider integers a1, ni, ag, ng, and an integer x. Suppose a; =,

T =p, a2. Let us consider an integer k. Then a1 =5, * + k- ny - ng =5, az.

(27) Let us consider integers aj, as, and natural numbers nj, ng. Suppose

ny > 0 and ny > 0. Let us consider an integer x. Suppose a1 =, T =, a2.
Then a; =5, * mod ny - Ny =y, as.

Let a1, ao be integers and ni, ne be natural numbers. Assume n; and no

are relatively prime and n; > 0 and ny > 0. The functor CRT (a1, n1, as, n2)

yielding an element of N is defined by

(Def. 2) a; =, it =, ag and it < ny - na.
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Let us consider integers a;, as and natural numbers n;, no. Now we state
the propositions:
(28) If n; and ny are relatively prime and n; > 0 and ng > 0, then {x, where
x is a positive natural number : a; =, * =,, ag} is infinite. The theorem
is a consequence of (26).
(29) If n; and ng are relatively prime and n; > 0 and ng > 0, then {z,
where z is a natural number : a1 =,, * =,, a2} is infinite. The theorem
is a consequence of (28).
Let u, m be integer-valued finite sequences and z be an integer. We say that
z =) m(-) if and only if
(Def. 3) for every natural number ¢ such that ¢ € domw holds z = (i) (mod m(7)).
Let u be an integer-valued finite sequence and m be a CR-sequence. Assume
domu = domm. The functor CRT(u, m) yielding an element of N is defined by
(Def. 4) it =,y m(-) and it < [[m.
Now we state the proposition:
(30) Let us consider an integer-valued finite sequence u, and a CR-sequence
m. Suppose dom u = domm. Let us consider an integer z. Suppose z =)
m(-). Let us consider an integer k. Then z + k- ([ m) =) m(:).
Let us consider an integer-valued finite sequence u and a CR-sequence m.
Now we state the propositions:
(31) If domu = domm, then {z, where z is a positive natural number :
z =) m(-)} is infinite. The theorem is a consequence of (30).
(32) If domu = domm, then {z, where 2 is a natural number : z =,y m()}
is infinite. The theorem is a consequence of (31).

3. PROBLEM 45

Let a, b, ¢ be integers. We say that two or more among numbers a, b, ¢ are
even if and only if
(Def. 5) a is even and b is even and ¢ is odd or a is even and b is odd and c¢ is
even or a is odd and b is even and c is even or a is even and b is even and
c is even.
We say that two or more among numbers a, b, ¢ are odd if and only if
(Def. 6) ais odd and b is odd and c is even or a is odd and b is even and ¢ is odd
or a is even and b is odd and c is odd or a is odd and b is odd and c is
odd.
Let a, b, ¢, n be integers. We say that a, b, ¢ give three different remainders
upon dividing by n if and only if
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(Def. 7) a mod n, b mod n, ¢ mod n are mutually different.
We say that at least two of the numbers a, b, ¢ are not divisible by n if and only
if
(Def. 8) nfaandnfbandn|corntaandn|bandnfcorn|aandntband
ntcornfaandntbandniec.
Let a, b, ¢ be integers. The functor numberR(a, b, ¢) yielding an element of
N is defined by the term
(Def. 9) { 1, if two 0{" more among numbers a, b, ¢ are even,
0, otherwise.
Now we state the proposition:
(33) Let us consider a natural number r. If » = numberR(a, b, ¢), then two or
more among numbers a + 7, b+ r, ¢ + r are odd.
Let a, b, ¢ be integers. The functor numberRg(a, b, ¢) yielding an element of
7 is defined by the term
0, if a, b, c give three different remainders
upon dividing by 3,
1 — (a mod 3), if a mod 3 =5 mod 3 or @ mod 3 = ¢ mod 3,
1 — (b mod 3), otherwise.
Now we state the proposition:

(Def. 10)

(34) Let us consider an integer ro. Suppose rg = numberRg(a, b, ¢). Then at
least two of the numbers a + rg, b 4+ g, ¢ + ro are not divisible by 3.

Let h be an integer. The functor PrimeDivisorss3(h) yielding a subset of N
is defined by the term

(Def. 11)  PrimeDivisors(h) N (4, co).
Now we state the propositions:
35
36

) If i € PrimeDivisorss3(h), then i > 3.
)

7) 1If i € PrimeDivisorss3(h), then i is prime.
)
)

If ¢ € PrimeDivisorss3(h), then i | h.

w

38
39

(
(
(
( If 7 is prime and ¢ > 3 and i | h, then i € PrimeDivisorss3(h).
( If h # 0, then PrimeDivisorss3(h) C Seg|h|. The theorem is a consequ-
ence of (35), (36), and (4).

Let h be a non zero integer. One can verify that PrimeDivisorsss(h) is
included in a segment.

Let us consider a natural number n. Now we state the propositions:
(40) If h # 0, then if n € dom(Sgm PrimeDivisorss3(h)),

then (Sgm PrimeDivisorss3(h))(n) > 3. The theorem is a consequence of
(35).
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(41) 1If h # 0, then if n € dom(Sgm PrimeDivisorss3(h)),
then (Sgm PrimeDivisorss3(h))(n) | h. The theorem is a consequence of
(36).
(42) If h # 0, then if n € dom(Sgm PrimeDivisorss3(h)),
then (Sgm PrimeDivisorss3(h))(n) is prime. The theorem is a consequence
of (37).
Let a, b, ¢ be integers. Assume a, b, ¢ are mutually different.

A Sierpinski45 finite sequence of a, b, ¢ is a finite sequence of elements of Z
defined by

(Def. 12) there exists an integer h and there exists a finite sequence F' of elements
of N such that h = (a—b)-(a—c)-(b—c) and F' = Sgm PrimeDivisorss3(h)
and len it = len F’ and for every object i such that ¢ € dom it holds F'(i) {
a+it(i) and F(i)1b+ it(i) and F(i) { ¢+ (7).

Now we state the propositions:

(43) Let us consider integers a, b, ¢, h. Suppose h = (a — b) - (a —¢) - (b — ¢).
Let us consider a Sierpinski45 finite sequence S of a, b, c. Suppose a, b, ¢
are mutually different. Let us consider a natural number n. Suppose n =
numberR(a, b, ¢) (mod 2) and n = numberRg(a, b, ¢) (mod 3) and for every
natural number i such that ¢ € dom S holds n = S(7) (mod(Sgm PrimeDivi-
sorss3(h))(i)). Then a +n, b+ n, ¢+ n are mutually coprime.

(44) If h # 0, then rng((2,3) = Sgm PrimeDivisorss3(h)) C P.

PROOF: Set X = PrimeDivisorss3(h). Set F' = Sgm X. Set f = (2,3).
mgf CP.mgF CP.O

(45) If h # 0, then (2,3) ~Sgm PrimeDivisorss3(h) is Chinese remainder. The
theorem is a consequence of (44), (21), (40), (23), and (42).

(46) If a, b, ¢ are mutually different, then {n, where n is a positive natural

number : a + n, b+ n, ¢ + n are mutually coprime} is infinite.
PROOF: Set A = {n, where n is a positive natural number : a + n, b + n,
¢+ n are mutually coprime}. Set S = the Sierpinski45 finite sequence of
a, b, c. Set r = numberR(a, b, ¢). Set 79 = numberRq(a, b, ¢).

Consider h being an integer, F' being a finite sequence of elements of
N such that h = (a—b)-(a—c¢) - (b—¢) and F' = Sgm PrimeDivisorss3(h)
and len S = len F' and for every object ¢ such that i € dom S holds F'(4) {
a+ S(i) and F(i) b+ S(i) and F(i) tc+ S(3).

Set m = (2,3)"F. Set u = (r,19)"S. m(1) = 2. m(2) = 3. m is positive
yielding. Set Z = {z, where z is a positive natural number : z =,y m(:)}.
Z CA. O
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4. PROBLEM 49

Let n be a non zero natural number. One can check that PrimeDivisors(n)
is finite and PrimeDivisors(n) is included in a segment.

Let X be a non trivial, natural-membered set. Let us observe that there
exists a subset of X which is non empty and included in a segment.

Let X be a non empty, included in a segment subset of P. One can check
that Sgm X is non empty.

Let X be an included in a segment subset of P. Note that Sgm X is positive
yielding and Sgm X is Chinese remainder.

Let n be a non zero natural number. The functor PrimeDivisorspg(n) yiel-
ding a finite sequence of elements of P is defined by the term

(Def. 13) Sgm PrimeDivisors(n).
Let us note that PrimeDivisorspg(n) is increasing. Now we state the propo-
sition:

(47) Let us consider a non zero natural number n, and a natural number i.
Suppose ¢ € dom(PrimeDivisorspg(n)). Then (PrimeDivisorspg(n))(4) is
prime.

Let m be a non zero natural number and £ be a natural number.

A Sierpinski49 finite sequence of m, k is a finite sequence of elements of Z
defined by

(Def. 14) lenit = lenPrimeDivisorspg(m) and for every object ¢ such that i €
dom it holds (PrimeDivisorspg(m))(2) 1 it () - (it(i) + 2 - k).

Let n be a non zero natural number. Observe that PrimeDivisorspg(n) is
Chinese remainder and positive yielding and PrimeDivisorspg(1) is empty.

Let us consider a non zero natural number n. Now we state the propositions:

(48) support PFExp(n) = PrimeDivisors(n).

PRrROOF: Set S = support PFExp(n). Set X = PrimeDivisors(n). S C X
by [10, (34), (36)]. O

(49) If PrimeDivisors(n) is empty, then n = 1.

(50) If PrimeDivisorspg(n) is empty, then n = 1. The theorem is a consequ-
ence of (49).

Let n be a non trivial natural number. Let us note that PrimeDivisors(n) is
non empty and PrimeDivisorspg(n) is non empty.
Let us consider a non zero natural number n. Now we state the propositions:

(51) PrimeDivisorspg(n) = sort, CFS(support PFExp(n)). The theorem is
a consequence of (48).
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(52) PrimeDivisorsgg(n) = sort, CFS(support PPF(n)). The theorem is a con-
sequence of (51).

(53) Let us consider an integer j. Suppose j # 0. Let us consider a posi-
tive natural number n. Suppose for every natural number ¢ such that
i € dom(PrimeDivisorspg(n)) holds j and (PrimeDivisorspg(n))(i) are re-
latively prime. Then j and n are relatively prime. The theorem is a con-
sequence of (52) and (10).

(54) Let us consider a positive natural number m, a natural number &, a Sier-
pinski49 finite sequence S of m, k, and a CR-sequence q. Suppose ¢ =
PrimeDivisorspg(m). Then there exist positive natural numbers a, b such
that

(i) 2-k=a—b, and

(ii) @ and m are relatively prime, and

(iii) b and m are relatively prime, and

(iv) a=CRT(S,q) +I]¢+2-k, and

(v) b=CRT(S,q) +11q.

PROOF: Define F(integer) = $; - ($; +2-k)(€ Z). Consider f being a func-

tion from Z into Z such that for every element z of Z, f(x) = F(x). Set
= CRT(S,q)+1-(I]q). For every natural number ¢ such that i € domgq

holds f(zg) = f(S(i)) (modgq(i)). For every natural number ¢ such that

i € domgq holds f(S(i)) # 0 (modg(7)). For every natural number i such

that ¢ € dom ¢ holds f(zo) and ¢(i) are relatively prime. f(z¢) and m -1

are relatively prime. [J

(55) Let us consider a positive natural number m, and a natural number k.
Then there exist positive natural numbers a, b such that

(i) 2-k=a—0, and
(ii) @ and m are relatively prime, and
(iii) b and m are relatively prime.

The theorem is a consequence of (54) and (50).

5. PROBLEM 120

Now we state the proposition:
(56) Let us consider a non zero natural number m. Then there exists a natural
number s such that for every natural number n such that n > s holds
2m . 22" 41 is composite.



ELEMENTARY NUMBER THEORY PROBLEMS. PART XIV — ...

6. PROBLEM 131

Let i be an integer. A multiple of 7 is an integer defined by
(Def. 15) i | it.
Now we state the propositions:
(57) i-j is a multiple of i.
(58) If j is a multiple of i, then j + A - ¢ is a multiple of 7.
(59) Ifi# 1 and i # —1, then for every multiple m of ¢ such that m is prime
holds m =1 or m = —i.
(60) If n # 1, then for every multiple m of n such that m is prime holds
m = n. The theorem is a consequence of (59).

Let us consider ¢. The functor multiples(i) yielding a subset of Z is defined
by the term

(Def. 16) the set of all m where m is a multiple of i.
Now we state the propositions:
(61) Let us consider an object z. If z € multiples(), then z is a multiple of 1.
(62) j € multiples(i) if and only if 7 | j. The theorem is a consequence of (61).
(63) i-j € multiples(i). The theorem is a consequence of (57).
Let us consider i. Note that multiples(i) is non empty. Now we state the
propositions:
(64) multiples(0) = {0}. The theorem is a consequence of (61).
(65) multiples(1) = Z.
(66) multiples(—1) = Z.
Let 7 be a non zero integer. Let us note that i - idz is one-to-one. Now we
state the proposition:
(67) Let us consider a non zero integer ¢. Then Z ~ multiples(z). The theorem
is a consequence of (61).
Let i be a non zero integer. Note that multiples(i) is infinite. Now we state
the proposition:
(68) If i # 1 and ¢ # —1 and ¢ is not prime and —i is not prime, then
multiples(i) misses P. The theorem is a consequence of (61).

Let us consider m and n. The functor PrimeNumbers(m, n) yielding a subset
of N is defined by the term

(Def. 17) seq(m,n) NP.

One can verify that PrimeNumbers(m,n) is finite. Now we state the propo-
sitions:
(69) PrimeNumbers(0,10) = {2,3,5,7}.
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(70) PrimeNumbers(1,10) = {2,3,5,7,11}.

(71) PrimeNumbers(2,10) = {3,5,7,11}.

(72) PrimeNumbers(3,10) = {5,7,11,13}.

(73) Seqm,m) = 1.

(74) seq(m,n) misses {m +n+1,m +n + 2}.

(75) 1If a is even, then a is a multiple of 2.

(76) If ais even, then a € multiples(2). The theorem is a consequence of (75).
(77) 1If a is odd, then a is not a multiple of 2.

(78) If a is odd, then a ¢ multiples(2). The theorem is a consequence of (61)

and (77).
(79) If a is even, then multiples(2) N {a,a + 1} = {a}. The theorem is a con-
sequence of (61) and (76).

(80) If @ is odd, then multiples(2) N {a,a + 1} = {a + 1}. The theorem is
a consequence of (61) and (76).

(81) (i) multiples(2) N{a,a+ 1} ={a}, or
(ii) multiples(2) N{a,a+ 1} = {a + 1}.
(82) multiples(2) N {a,a + 1} = 1. The theorem is a consequence of (79) and
(80).
(83) multiples(2) Nseq(k,2-m) =m.
PROOF: Set M = multiples(2). Define P[natural number| =

M Nseq(k,2-$1) = $1. P[0]. For every natural number z such that P|[z]
holds P[z + 1]. For every natural number z, P[z]. O

(84) If n > 8, then there exists a multiple m of 3 such that m € seq(k,n) and
m is odd. The theorem is a consequence of (58).

(85) Let us consider a prime number p. Suppose p < k. Then multiples(p) N
seq(k, m) misses PrimeNumbers(k, m). The theorem is a consequence of
(61).

(86) PrimeNumbers(0,10) = 4.

(87) PrimeNumbers(1,10) = 5. The theorem is a consequence of (70).

(88) If 2 < k, then PrimeNumbers(k, 10) < 4. The theorem is a consequence
of (71), (84), (61), (33), (73), (62), and (60).
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7. PROBLEM 144

Let A be a set. One can verify that every element of Neyen \ A is even and
there exists an element of Neyen \ A which is even. Now we state the proposition:

(89) Let us consider a non zero integer D. Then {{z, y, z), where z, y, z are
positive natural numbers : 22 — D - y? = 22 and z and y are relatively
prime} is infinite.

8. PROBLEM 148

Now we state the propositions:

(90) Let us consider complex numbers z, y, z. Then 22 +y2+22+x+y+2z =1
ifand only if (2 -2+ 1)2+(2-y+1)2+(2-2+1)2="T.
(91) Let us consider integers a, b, c. Suppose a2 + b2 + ¢2 mod 4 = 0. Then
(i) a is even, and
(ii) b is even, and
(iii) ¢ is even.
(92) i) a2+ b2+ 2 mod 8 =0, or
(i
(iii) a2 +b% + ¢ mod 8 = 2, or
a? +b% +c? mod 8 = 3, or
a® +b%+c? mod 8 =4, or

(iv
(v

(vi
(vii) a2+ b2 + ¢% mod 8 = 6.

(93) There exist no rational numbers z, y, z such that 2 + y2 + 22 = 7.
Proor: Consider nq, mi being integers such that m; > 0 and =z = 7%1
Consider no, mo being integers such that me > 0 and y = 77;—22 Consider
ns, ms being integers such that ms > 0 and 2z = r’% Set a = ny - mg - ms.
Set b = ny-mj-ms. Set ¢ = ng-mj-my. Define P[natural number] = $; # 0
and there exist integers a, b, ¢ such that 7 -$2 = a2 + b2 + 2. Consider
M Dbeing a natural number such that P[M] and for every natural number
n such that P[n] holds M < n. Consider a, b, ¢ being integers such that
7T-M?2=a%+0b2+c2 0

(94) There exist no rational numbers z, y, z such that 22 4+y?+ 22+ x4+ y+2 =
1. The theorem is a consequence of (93).

)
)
(
) a2 +b% +c% mod 8 =1, or
)
)
)
)

a® +b%+c? mod 8 =5, or
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9. PROBLEM 149

Now we state the proposition:

(95) There exist no positive integers x, y, z such that 4 -z -y —z — y = 22.
PRroOOF: Consider p, k being natural numbers such that p =4 -k + 3 and
pis prime and p | 4- (z — 1) + 3. 2- z and p are relatively prime by [I8|
(L], [7, (15)]. O

The functor SierpinskiEx149 yielding a function from N, into Z X Z x Z is
defined by
(Def. 18) for every non zero natural number n, it(n) = (=1, =5-n%2—2.n, =5 -n—
1).
Note that SierpinskiEx149 is one-to-one. Now we state the propositions:

(96) rng SierpinskiEx149 C {(z, y, z), where z,y, z are negative integers : 4 -
roy—z—y=22}

97) {{z, y, ), where z, y, z are negative integers : 4 -z -y —x —y = 22} is
infinite. The theorem is a consequence of (96).

10. PROBLEM 150

Let m, D be complex numbers. The functor SierpinskiEx150(m, D) yielding
a sequence of C x C is defined by

(Def. 19) it(0) = (2-m? + 1, 2-m) and for every natural number n, it(n + 1) =
(((it(n))1)® + D - ((it(n))2)?, 2 ((it(n))1) - ((it(n))2))-

Let m, D be real numbers. Let us note that SierpinskiEx150(m, D) is (RxR)-

valued. Let m, D be rational numbers. One can verify that SierpinskiEx150(m, D)

is (Q x Q)-valued. Let m, D be integers. Let us note that SierpinskiEx150(m, D)
is (Z x Z)-valued.

Let m, D be natural numbers. One can verify that SierpinskiEx150(m, D)
is (N x N)-valued. Let m, D be positive, natural numbers and n be a natu-
ral number. One can verify that ((SierpinskiEx150(m, D))(n))1 is positive and
((SierpinskiEx150(m, D))(n))2 is positive. Now we state the proposition:

(98) Let us consider positive, natural numbers m, D, and natural numbers a,
b. Suppose a < b. Then

(i) ((SierpinskiEx150(m, D))(a))1 < ((SierpinskiEx150(m, D))(b))1, and
(ii) ((SierpinskiEx150(m, D))(a))2 < ((SierpinskiEx150(m, D))(b))2.

PROOF: Set f = SierpinskiEx150(m, D). Define P[natural number| = if
$1 > a, then (f($1))1 > (f(a))1 and (f($1))2 > (f(a))2. For every natural
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number k such that P[k] holds P[k+1]. For every natural number k, P[k].
O

Let m, D be positive, natural numbers. One can check that SierpinskiEx150

(m, D) is one-to-one. Now we state the proposition:

(99) Let us consider positive integers D, m. Suppose D = m? + 1. Then {(z,

y), where z, y are positive integers : 2 — D -y = 1} is infinite.
PROOF: Set f = SierpinskiEx150(m, D). Define R[complex number, comp-
ex number] = $2—D-$2 = 1. Set A = {(x, y), where z,y are positive inte-
gers : R[z,y]}. Define F(real number, real number) = $2 + D - $2. Define
G(real number, real number) = 2 - §; - $5. Define A [natural number| =
f($1) € A. For every natural number a such that A[a] holds N[a + 1]. For
every natural number a, Na]. rng f C A. O

11. PROBLEM 151

Now we state the propositions:
(100) 1If 22 < n and 2" | 33, then 22 | i. The theorem is a consequence of (4).
(101) 1If 23 < n and 2" | 33, then 23 | i. The theorem is a consequence of (4).
(102) If i and j are relatively prime and p™ | i - j, then p™ | i or p™ | j. The
theorem is a consequence of (4).

(103) If n is odd and i and j are relatively prime and i - j = 2™, then there
exists an integer k such that i = k™.

(104) If n is odd, then for every negative real numbers r, s such that r < s
holds r™ < s™.

(105) If 0 < j and j2 < z < (j + 1)2, then there exists no integer i such that
z = i2,

(106) {(z, y), where z,y are integers : y2 = 3+ (2 + 4)?} = {(0, 4), (0, —4)}.
PROOF: Set A = {(z, y), where z,y are integers : 32 = 23 + (z +4)}.
A C {(0, 4),(0, —4)}. O

12. PROBLEM 152

Now we state the propositions:
(107) Let us consider a complex number m, and non zero complex numbers z,
y, z. Then §+%+§ =mifandonlyifz?-24+9y%-z+22-y=m-z-y- 2.
(108) Let us consider an integer m, and non zero integers x, y, z. Suppose
% + %+ 2 =m and z, y, z are mutually coprime. Then
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(i) x=1or x=—1, and
(ii) y=1ory=—1, and
(ili) z=1or z = —1.
The theorem is a consequence of (107) and (14).

(109) Let us consider an integer m, and positive integers z, y, z. Suppose
% + %+ 2 =m and z, y, z are mutually coprime. Then

(i) x =1, and
(ii) y =1, and
(ifi) 2= 1.

(110) {(z, y, z), where z,y, z are positive integers : % +4%+2=3anduz,y,
z are mutually coprime} = {(1, 1, 1)}. The theorem is a consequence of
(108).

(111) {(=z, y, z), where xz,y, z are non zero integers : % + 24+ 2 =3andx,
y, z are mutually coprime} = {(1, 1, 1), (-1, —1, —1)}. The theorem is
a consequence of (108) and (11).

(112) Let us consider a natural number m. Suppose m # 3. Then there exist
no non zero integers x, y, z such that % + 4+ 2 =mand x,y, z are
mutually coprime. The theorem is a consequence of (108).
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