REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16609
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorSzekalska, Marta-
dc.contributor.authorWróblewska, Magdalena-
dc.contributor.authorCzajkowska-Kośnik, Anna-
dc.contributor.authorSosnowska, Katarzyna-
dc.contributor.authorMisiak, Paweł-
dc.contributor.authorWilczewska, Agnieszka Zofia-
dc.contributor.authorWinnicka, Katarzyna-
dc.date.accessioned2024-06-05T06:23:26Z-
dc.date.available2024-06-05T06:23:26Z-
dc.date.issued2023-
dc.identifier.citationMaterials, Vol. 16, Iss. 1, 2023, p. 403pl
dc.identifier.issn1996-1944-
dc.identifier.urihttp://hdl.handle.net/11320/16609-
dc.description.abstractCandida species are opportunistic fungi, which are primary causative agents of vulvovaginal candidiasis. The cure of candidiasis is difficult, lengthy, and associated with the fungi resistivity. Therefore, the research for novel active substances and unconventional drug delivery systems providing effective and safe treatment is still an active subject. Microparticles, as multicompartment dosage forms due to larger areas, provide short passage of drug diffusion, which might improve drug therapeutic efficiency. Sodium alginate is a natural polymer from a polysaccharide group, possessing swelling, mucoadhesive, and gelling properties. Gelatin A is a natural high-molecular-weight polypeptide obtained from porcine collagen. The purpose of this study was to prepare microparticles by the spray-drying of alginate/gelatin polyelectrolyte complex mixture, with a novel antifungal drug—luliconazole. In the next stage of research, the effect of gelatin presence on pharmaceutical properties of designed formulations was assessed. Interrelations among polymers were evaluated with thermal analysis and Fourier transform infrared spectroscopy. A valid aspect of this research was the in vitro antifungal activity estimation of designed microparticles using Candida species: C. albicans, C. krusei, and C. parapsilosis. It was shown that the gelatin addition affected the particles size, improved encapsulation efficiency and mucoadhesiveness, and prolonged the drug release. Moreover, gelatin addition to the formulations improved the antifungal effect against Candida species.pl
dc.description.sponsorshipThis researchwas funded by Medical University of Bialystok grant SUB/2/DN/22/004/2215.pl
dc.language.isoenpl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectmicroparticlespl
dc.subjectsodium alginatepl
dc.subjectgelatinpl
dc.subjectluliconazolepl
dc.subjectspray dryingpl
dc.subjectantifungal activitypl
dc.titleThe Spray-Dried Alginate/Gelatin Microparticles with Luliconazole as Mucoadhesive Drug Delivery Systempl
dc.typeArticlepl
dc.rights.holderCopyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).pl
dc.identifier.doi10.3390/ma16010403-
dc.description.EmailMarta Szekalska: marta.szekalska@umb.edu.plpl
dc.description.AffiliationMarta Szekalska - Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Polandpl
dc.description.AffiliationMagdalena Wróblewska - Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Polandpl
dc.description.AffiliationAnna Czajkowska-Kośnik - Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Polandpl
dc.description.AffiliationKatarzyna Sosnowska - Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Polandpl
dc.description.AffiliationPaweł Misiak - Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, 15-245 Białystok, Polandpl
dc.description.AffiliationAgnieszka Zofia Wilczewska - Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, 15-245 Białystok, Polandpl
dc.description.AffiliationKatarzyna Winnicka - Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Polandpl
dc.description.referencesWillems, H.M.E.; Ahmed, S.S.; Liu, J.; Xu, Z.; Peters, B.M. Vulvovaginal Candidiasis: A Current Understanding and Burning Questions. J. Fungi 2020, 6, 27.pl
dc.description.referencesZeng, X.; Zhang, Y.; Zhang, T.; Xue, Y.; Xu, H.; An, R. Risk Factors of Vulvovaginal Candidiasis among Women of Reproductive Age in Xi’an: A Cross-Sectional Study. BioMed. Res. Int. 2018, 2018, 9703754.pl
dc.description.referencesArastehfar, A.; Gabaldón, T.; Garcia-Rubio, R.; Jenks, J.D.; Hoenigl, M.; Salzer, H.J.F.; Ilkit, M.; Lass-Flörl, C.; Perlin, D.S. Drug-Resistant Fungi: An Emerging Challenge Threatening Our Limited Antifungal Armamentarium. Antibiotics 2020, 9, 877.pl
dc.description.referencesCaramella, C.M.; Rossi, S.; Ferrari, F.; Bonferoni, M.C.; Sandri, G. Mucoadhesive and thermogelling systems for vaginal drug delivery. Adv. Drug Deliv. Rev. 2015, 92, 39–52.pl
dc.description.referencesOsmałek, T.; Froelich, A.; Jadach, B.; Tatarek, A.; Gadzi´ nski, P.; Falana, A.; Gralińska, K.; Ekert, M.; Puri, V.; Wrotyńska-Barczyńska, J.; et al. Recent Advances in Polymer-Based Vaginal Drug Delivery Systems. Pharmaceutics 2021, 13, 884.pl
dc.description.referencesKomati, S.; Swain, S.; Rao, M.E.B.; Jena, B.R.; Dasi, V. Mucoadhesive Multiparticulate Drug Delivery Systems: An Extensive Review of Patents. Adv. Pharm. Bull. 2019, 9, 521–538.pl
dc.description.referencesSzekalska, M.; Puciłowska, A.; Szymańska, E.; Ciosek, P.; Winnicka, K. Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. Int. J. Polym. Sci. 2016, 2016, 17.pl
dc.description.referencesSood, A.; Arora, V.; Shah, J.; Kotnala, R.; Jain, T.K. Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 80, 274–281.pl
dc.description.referencesFrent, O.D.; Vicas, L.G.; Duteanu, N.; Morgovan, C.M.; Jurca, T.; Pallag, A.; Muresan, M.E.; Filip, S.M.; Lucaciu, R.-L.; Marian, E. Sodium Alginate—Natural Microencapsulation Material of Polymeric Microparticles. Int. J. Mol. Sci. 2022, 23, 12108.pl
dc.description.referencesVoron’Ko, N.G.; Derkach, S.; Izmailova, V.N. Rheological Properties of Gels of Gelatin with Sodium Alginate. Russ. J. Appl. Chem. 2002, 75, 790–794.pl
dc.description.referencesGoudoulas, T.B.; Germann, N. Phase transition kinetics and rheology of gelatin-alginate mixtures. Food Hydrocoll. 2017, 66, 49–60.pl
dc.description.referencesAbowska, M.B.; Cierluk, K.; Jankowska, A.M.; Kulbacka, J.; Detyna, J.; Michalak, I. A Review on the Adaption of Alginate-Gelatin Hydrogels for 3D Cultures and Bioprinting. Materials 2021, 14, 858.pl
dc.description.referencesSarker, B.; Papageorgiou, D.G.; Silva, R.; Zehnder, T.; Gul-E-Noor, F.; Bertmer, M.; Kaschta, J.; Chrissafis, K.; Detsch, R.; Boccaccini, A.R. Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J. Mater. Chem. B 2013, 2, 1470–1482.pl
dc.description.referencesU.S. Food and Drug Administration. Available online: https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm549588.pdf (accessed on 14 September 2022).pl
dc.description.referencesFirdaus, S.; Hassan, N.; Mirza, M.A.; Ara, T.; El-Serehy, H.A.; Al-Misned, F.A.; Iqbal, Z. FbD directed fabrication and investigation of luliconazole based SLN gel for the amelioration of candidal vulvovaginitis: A 2 T (thermosensitive & transvaginal) approach. Saudi J. Biol. Sci. 2020, 28, 317–326.pl
dc.description.referencesScher, R.K.; Nakamura, N.; Tavakkol, A. Luliconazole: A review of a new antifungal agent for the topical treatment of onychomycosis. Mycoses 2014, 57, 389–393.pl
dc.description.referencesDrugBank Online Database for Drug and Drug Target Info. Available online: https://go.drugbank.com/ (accessed on 8 December 2021).pl
dc.description.referencesOwen, D.H.; Katz, D.F. A vaginal fluid simulant. Contraception 1999, 59, 91–95.pl
dc.description.referencesDerkach, S.R.; Kuchina, Y.A.; Kolotova, D.S.; Voron’Ko, N.G. Polyelectrolyte Polysaccharide–Gelatin Complexes: Rheology and Structure. Polymers 2020, 12, 266.pl
dc.description.referencesSzekalska, M.; Citkowska, A.; Wróblewska, M.; Winnicka, K. The Impact of Gelatin on the Pharmaceutical Characteristics of Fucoidan Microspheres with Posaconazole. Materials 2021, 14, 4087.pl
dc.description.referencesSolanki, B.; Joshi, H. Development and Validation of a New RP-HPLC Analytical Method for the Simultaneous Determination of Luliconazole and Clobetasol Propionate in Synthetic Mixture. J. Pharm. Res. Int. 2021, 33, 53–60.pl
dc.description.referencesPotaś, J.; Szymańska, E.; Wróblewska, M.; Kurowska, I.; Maciejczyk, M.; Basa, A.; Wolska, E.; Wilczewska, A.Z.; Winnicka, K. Multilayer Films Based on Chitosan/Pectin Polyelectrolyte Complexes as Novel Platforms for Buccal Administration of Clotrimazole. Pharmaceutics 2021, 13, 1588.pl
dc.description.referencesCosta, P.; Lobo, J.M.S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133.pl
dc.description.referencesLee, J.A.; Chee, H.Y. In Vitro Antifungal Activity of Equol against Candida albicans. Mycobiology 2010, 38, 328–330.pl
dc.description.referencesStrand, A.; Vähäsalo, L.; Ketola, A.; Salminen, K.; Retulainen, E.; Sundberg, A. In-situ analysis of polyelectrolyte complexes by flow cytometry. Cellulose 2018, 25, 3781–3795.pl
dc.description.referencesTran, T.H.; Ramasamy, T.; Poudel, B.K.; Marasini, N.; Moon, B.K.; Cho, H.J.; Choi, H.-G.; Yong, C.S.; Kim, J.O. Preparation and characterization of spray-dried gelatin microspheres encapsulating ganciclovir. Macromol. Res. 2013, 22, 124–130.pl
dc.description.referencesDanaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57.pl
dc.description.referencesTu, L.; He, Y.; Yang, H.; Wu, Z.; Yi, L. Preparation and characterization of alginate–gelatin microencapsulated Bacillus subtilis SL-13 by emulsification/internal gelation. J. Biomater. Sci. Polym. Ed. 2015, 26, 735–749.pl
dc.description.referencesPalmieri, G.F.; Bonacucina, G.; Di Martino, P.; Martelli, S. Spray-Drying as a Method for Microparticulate Controlled Release Systems Preparation: Advantages and Limits. I.Water-Soluble Drugs. Drug Dev. Ind. Pharm. 2001, 27, 195–204.pl
dc.description.referencesAgarwal, S.; Aggarwal, S. Mucoadhesive polymeric platform for drug delivery; a comprehensive review. Curr. Drug Deliv. 2015, 12, 139–156.pl
dc.description.referencesBoddupalli, B.M.; Mohammed, Z.N.K.; Nath, R.A.; Banji, D. Mucoadhesive drug delivery system: An overview. J. Adv. Pharm. Technol. Res. 2010, 1, 381.pl
dc.description.referencesOh, J.; Kim, B. Mucoadhesive and pH-responsive behavior of gelatin containing hydrogels for protein drug delivery applications. Korea-Australia Rheol. J. 2020, 32, 41–46.pl
dc.description.referencesSahasathian, T.; Praphairaksit, N.; Muangsin, N. Mucoadhesive and floating chitosan-coated alginate beads for the controlled gastric release of amoxicillin. Arch. Pharmacal Res. 2010, 33, 889–899.pl
dc.description.referencesKotagale, N.; Patel, C.; Parkhe, A.; Khandelwal, H.; Taksande, J.; Umekar, M. Carbopol 934-sodium alginate-gelatin mucoadhesive ondansetron tablets for buccal delivery: Effect of PH modifiers. Indian J. Pharm. Sci. 2010, 72, 471–479.pl
dc.description.referencesD’Souza, S. A Review of In Vitro Drug Release Test Methods for Nano-Sized Dosage Forms. Adv. Pharm. 2014, 2014, 304757.pl
dc.description.referencesCarbinatto, F.M.; de Castro, A.D.; Evangelista, R.C.; Cury, B.S. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian J. Pharm. Sci. 2014, 9, 27–34.pl
dc.description.referencesZou, Z.; Zhang, B.; Nie, X.; Cheng, Y.; Hu, Z.; Liao, M.; Li, S. A sodium alginate-based sustained-release IPN hydrogel and its applications. RSC Adv. 2020, 10, 39722–39730.pl
dc.description.referencesFarhangi, M.; Dadashzadeh, S.; Bolourchian, N. Biodegradable Gelatin Microspheres as Controlled Release Intraarticular Delivery System: The Effect of Formulation Variables. Indian J. Pharm. Sci. 2017, 79, 105–112.pl
dc.description.referencesMircioiu, C.; Voicu, V.; Anuta, V.; Tudose, A.; Celia, C.; Paolino, D.; Fresta, M.; Sandulovici, R.; Mircioiu, I. Mathematical Modeling of Release Kinetics from Supramolecular Drug Delivery Systems. Pharmaceutics 2019, 11, 140.pl
dc.description.referencesCosta, M.J.; Marques, A.M.; Pastrana, L.M.; Teixeira, J.A.; Sillankorva, S.M.; Cerqueira, M.A. Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocoll. 2018, 81, 442–448.pl
dc.description.referencesShehata, T.M.; Ibrahima, M.M. BÜCHI nano spray dryer B-90: A promising technology for the production of metformin hydrochloride-loaded alginate–gelatin nanoparticles. Drug Dev. Ind. Pharm. 2019, 45, 1907–1914.pl
dc.description.referencesNurazzi, N.M.; Asyraf, M.R.M.; Rayung, M.; Norrrahim, M.N.F.; Shazleen, S.S.; Rani, M.S.A.; Shafi, A.R.; Aisyah, H.A.; Radzi, M.H.M.; Sabaruddin, F.A.; et al. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers 2021, 13, 2710.pl
dc.description.referencesParvez, S.; Rahman, M.M.; Khan, M.A.; Islam, J.M.M.; Ahmed, M.; Ahmed, B. Preparation and characterization of artificial skin using chitosan and gelatin composites for potential biomedical application. Polym. Bull. 2012, 69, 715–731.pl
dc.description.referencesChoukaife, H.; Doolaanea, A.A.; Alfatama, M. Alginate Nanoformulation: Influence of Process and Selected Variables. Pharmaceuticals 2020, 13, 335.pl
dc.description.referencesChiellini, E.; Cinelli, P.; Fernandes, E.G.; Kenawy, E.-R.S.; Lazzeri, A. Gelatin-Based Blends and Composites. Morphological and Thermal Mechanical Characterization. Biomacromolecules 2001, 2, 806–811.pl
dc.description.referencesDevi, N.; Hazarika, D.; Deka, C.; Kakati, D.K. Study of Complex Coacervation of Gelatin A and Sodium Alginate for Microencapsulation of Olive Oil. J. Macromol. Sci. Part A 2012, 49, 936–945.pl
dc.description.referencesGill, P.; Moghadam, T.T.; Ranjbar, B.; Chiu, M.H.; Jrenner, E.J. Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J. Pharm. Bioallied Sci. 2011, 3, 39–59.pl
dc.description.referencesSoares, J.P.; Santos, J.E.; Chierice, G.O.; Cavalheiro, E.T.G. Thermal behavior of alginic acid and its sodium salt. Eclética Química 2004, 29, 57–64.pl
dc.description.referencesDudek, G.; Turczyn, R. New type of alginate/chitosan microparticle membranes for highly efficient pervaporative dehydration of ethanol. RSC Adv. 2018, 8, 39567–39578.pl
dc.description.referencesDai, C.-A.; Chen, Y.-F.; Liu, M.-W. Thermal properties measurements of renatured gelatin using conventional and temperature modulated differential scanning calorimetry. J. Appl. Polym. Sci. 2005, 99, 1795–1801.pl
dc.description.referencesSobral, P.; Menegalli, F.; Hubinger, M.; Roques, M. Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocoll. 2001, 15, 423–432.pl
dc.description.referencesKumar, M.; Shanthi, N.; Mahato, A.K.; Soni, S.; Rajnikanth, P. Preparation of luliconazole nanocrystals loaded hydrogel for improvement of dissolution and antifungal activity. Heliyon 2019, 5, e01688.pl
dc.description.referencesFlores-Hernández, C.; Cornejo-Villegas, M.; Moreno-Martel, A.; Del Real, A. Synthesis of a Biodegradable Polymer of Poly (Sodium Alginate/Ethyl Acrylate). Polymers 2021, 13, 504.pl
dc.description.referencesRohman, A.; Ghazali, M.A.B.; Windarsih, A.; Irnawati, I.; Riyanto, S.; Yusof, F.M.; Mustafa, S. Comprehensive Review on Application of FTIR Spectroscopy Coupled with Chemometrics for Authentication Analysis of Fats and Oils in the Food Products. Molecules 2020, 25, 5485.pl
dc.description.referencesDerkach, S.R.; Voron’Ko, N.G.; Sokolan, N.I.; Kolotova, D.S.; Kuchina, Y.A. Interactions between gelatin and sodium alginate: UV and FTIR studies. J. Dispers. Sci. Technol. 2019, 41, 690–698.pl
dc.description.referencesLopes, S.; Bueno, L.; Júnior, F.D.A.; Finkler, C. Preparation and characterization of alginate and gelatin microcapsules containing Lactobacillus rhamnosus. An. Acad. Bras. Cienc. 2017, 89, 1601–1613.pl
dc.description.referencesNational Committee for Clinical Laboratory Standards. Performance Standards for Antifungal Susceptibil-ity Testing of Yeasts. Available online: https://clsi.org/media/3680/m60ed2_sample.pdf (accessed on 24 September 2022).pl
dc.description.referencesde Castro Spadari, C.; Lopes, L.B.; Ishida, K. Potential Use of Alginate-Based Carriers As Antifungal Delivery System. Front. Microbiol. 2017, 8, 97.pl
dc.description.referencesPritchard, M.F.; Powell, L.C.; Jack, A.A.; Powell, K.; Beck, K.; Florance, H.; Forton, J.; Rye, P.D.; Dessen, A.; Hill, K.E.; et al. A lowmolecular-weight alginate oligosaccharide disrupts Pseudomonal micro-colony formation and enhances antibiotic effectiveness. Antimicrob. Agents Chemother. 2017, 9, e00762-17.pl
dc.description.referencesAmbrosio, J.A.R.; Pinto, B.C.D.S.; Godoy, D.D.S.; Carvalho, J.A.; Abreu, A.D.S.; Da Silva, B.G.M.; Leonel, L.D.C.; Costa, M.S.; Junior, M.B.; Simioni, A.R. Gelatin nanoparticles loaded methylene blue as a candidate for photodynamic antimicrobial chemotherapy applications in Candida albicans growth. J. Biomater. Sci. Polym. Ed. 2019, 30, 1356–1373.pl
dc.description.referencesKim, S.-C.; Kim, J.-W.; Yoon, G.-J.; Nam, S.-W.; Lee, S.-Y. Antifungal effects of 3D scaffold type gelatin/Ag nanoparticles biocomposite prepared by solution plasma processing. Curr. Appl. Phys. 2013, 13, S48–S53.pl
dc.description.referencesKlotz, S.A.; Smith, R.L. Gelatin fragments block adherence of Candida albicans to extracellular matrix proteins. Microbiology 1995, 141, 2681–2684.pl
dc.description.volume16pl
dc.description.number1pl
dc.identifier.citation2Materialspl
dc.identifier.orcid0000-0003-4340-5350-
dc.identifier.orcid0000-0002-5782-679X-
dc.identifier.orcid0000-0002-5025-4864-
dc.identifier.orcid0000-0001-8528-3764-
dc.identifier.orcid0000-0002-6882-3519-
dc.identifier.orcid0000-0001-8587-6711-
dc.identifier.orcid0000-0002-1013-610X-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons