REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16003
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorCudowski, A.-
dc.contributor.authorPietryczuk, A.-
dc.date.accessioned2024-02-06T12:43:25Z-
dc.date.available2024-02-06T12:43:25Z-
dc.date.issued2019-
dc.identifier.citationModern problems and solutions in environmental protection. Post-conference monograph of Current Environmental Issues 2019, ed. by Joanna Karpińska, Marek Bartoszewicz, Róża Sawczuk, Białystok 2019, s. 74-91pl
dc.identifier.isbn978-83-7431-615-6-
dc.identifier.urihttp://hdl.handle.net/11320/16003-
dc.descriptionZdigitalizowano i udostępniono w ramach projektu pn. Rozbudowa otwartych zasobów naukowych Repozytorium Uniwersytetu w Białymstoku – kontynuacja, dofinansowanego z programu „Społeczna odpowiedzialność nauki” Ministra Edukacji i Nauki na podstawie umowy BIBL/SP/0040/2023/01.pl
dc.description.abstractThe aim of this study was to investigate the effect of manganese(II) and iron (III) on the growth and basic metabolic processes of the unicellular alga Chlorella vulgaris. To this end, alga cultures were treated with ions of iron(III) and manganese(II) at concentrations 0.1, 0.5, 2, 5, 10, 20 and 50 mg L-1 and then analyzed in terms of changes in the number of cells, content of monosaccharides, proteins, chlorophyll and the activity of antioxidant enzymes: superoxide dismutase and glutathione reductase. The development of C. vulgaris was influenced more by manganese(II) than iron(III). The largest increase in the number of cells and concentrations of the studied biochemical parameters and antioxidant enzyme activity was induced by 20 mg L-1 manganese(II). The experiment also showed that an appropriate amount of iron (III) helped control the level of manganese(II) thanks to the co-precipitation of metals, and so could help in tackling the worldwide problem of eutrophication. In the case of introduction of 50 mg L-1 of both iron(III) and manganese(II), the number of C. vulgaris cells decreased, and thus the concentration of the biochemical parameters in water. The results of these experimental studies well collaborate with a study conducted earlier of surface water, which showed the existence of a strong correlation between the concentration of manganese in the water and algal biomass, whose determinant is chlorophyll a.pl
dc.language.isoenpl
dc.publisherWydawnictwo Uniwersytetu w Białymstokupl
dc.subjectChlorella vulgarispl
dc.subjectmanganesepl
dc.subjectironpl
dc.subjecteutrophication processpl
dc.titleGrowth and metabolism of Chlorella vulgaris under the influence of manganese and ironpl
dc.typeBook chapterpl
dc.rights.holder© Copyright by Uniwersytet w Białymstoku, Białystok 2019pl
dc.description.EmailA. Pietryczuk: annapiet@uwb.edu.plpl
dc.description.AffiliationA. Cudowski - University of Bialystok, Institute of Biology, Department of Hydrobiologypl
dc.description.AffiliationA. Pietryczuk - University of Bialystok, Institute of Biology, Department of Hydrobiologypl
dc.description.referencesAbadia J, Morales F, Abadia A (1999) Photosystem II efficiency in low chlorophyll, iron-deficient leaves. Plant and Soil doi: 10.1023/ A:1004451728237pl
dc.description.referencesAbd El-Razek UA, Dorgham EA, Morsy SM (2013) Effect of certain mieronutrients on some agronomie characters, chemical constituents and Alternaria leaf spot disease of Faba Bean. Asian J Crop Sci doi: 10.3923/ ajcs.2013.426.435pl
dc.description.referencesAllen MD, Kropat J, Tottey S, DeI Campo JA, Merchant SS (2007) Manganese deficiency in Chlamydomonas results in lass of photosystem II and Mn SOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency. Plant Physiol 143: 263-277pl
dc.description.referencesArya SK, Roy BK (2011) Manganese induced changes in growth, chlorophyll content and antioxidants activity in seedlings of broad bean (Vicia faba L.). J Environ Bio132: 707-711pl
dc.description.referencesBajguz A, Asami T (2004) Effects of brassinazole, an inhibitor of brassinosteroid biosynthesis, on light- and dark-grown Chlorella vulgaris. Planta doi: 10.1007/s00425-003-1170-9pl
dc.description.referencesBeauchamp C, Fridovieh I (1971) SOD improved assays and an assay applicable to acrylamide gels. Anal Biochem doi: 10.1016/0003-2697(71)90370-8pl
dc.description.referencesChen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2010) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology doi: 10.1016/j.biortech.201O.09.062pl
dc.description.referencesChunhui C, Shichun S, Xuekui W, Wenling L, Ying L (2011) Effects of manganese on the growth, photosystem II and SOD activity of the dinoflagellate Amphidinium sp. J Appl Phycol doi: 10.1007/s10811-010-9637-0pl
dc.description.referencesConcas A, Steriti A, Pisu M, Cao G (2014) Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch Photobioreactors. Bioresource Technology doi:10. 1016/j.biortech.2013.11.085pl
dc.description.referencesCudowski A (2015) Dissolved reactive manganese as a new index determining the trophie status of limnie waters. Ecol Indicat doi: 10.1016/j.ecolind.2014.09.035pl
dc.description.referencesCudowski A, Górniak A (2008) Manganese fraction in waters of polyhumic Siemianówka dam Reservoir. Pol J Environ Stud 17(5): 713-719pl
dc.description.referencesDoganlar ZB, Cakmak S, Yanik T (2012) Metal uptake and physiological changes in Lemna gibba exposed to manganese and nickel. Int J BioI 4(3): 148-157pl
dc.description.referencesFerroni L, Baldisserotto C, Fasula MP, Pagnoni A, Pancaldi S (2004) Adaptive modifications of the photosynthetic apparatus In Euglena gracilis Klebs exposed to manganese excess. Protoplasma doi: 10.1007/s00709-004-0072-4pl
dc.description.referencesFoyer, C.H. & Halliwel, B. (1976). The presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbie acid metabolism. Planta 133: 21-25pl
dc.description.referencesFraústo da Silva JJR, Williams RJP (1991) The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press, New Yorkpl
dc.description.referencesGangwar S, Singh VP, Prasad SM, Maurya JN (2010) Modulation of manganese taxicity in Pisum sativum L. seedlings by kinetin. Sci Horticulturae 126: 467-474pl
dc.description.referencesGoto N, Kawamura T, Mitamura O, Terai H (1999) Importance of extracellular organic carbon production in the total primary production by tidal-flat diatoms in comparison to phytoplankton. Mar Ecol Pog Ser doi: 10.3354/meps190289pl
dc.description.referencesGórniak A, Cudowski A (2006) Effects of Narew River damming in the Siemianówka Reservoir on manganese forms in river water. Pol J Environ Stud 15:457-461pl
dc.description.referencesGrabowska M (2012) The role of eutrophic lowland reservoir in shaping the composition of river phytoplankton. Ecohydrol Hydrobiol doi: 10.2478/v10104-012-0016-0pl
dc.description.referencesGraham JW, Cooper SC (1959) Biological origin of manganese-rich deposits on the sea floor. Nature 183: 1050-1051pl
dc.description.referencesHauck M, Spribille T (2002) The Mn/Ca and Mn/Mg ratios in bark as possible causes for the occurrence of Lobarion lichens on conifers in the dripzone of Populus in Western North America. Lichenologist doi: 10.1006/lich.2002.0421pl
dc.description.referencesImai I, Ymagauchi M, Hori Y (2006) Eutrophication and occurrences of harmful algal blooms in the Seto Inland Sea, Japan. Plankton Benthos Resources 1(2), 71-84pl
dc.description.referencesJabeen N, Ahmad R (2011) Effect of foliar-applied baron and manganese on growth and biochemical activities in sunflower under saline conditions. Pak J Bot 43(2): 1271-1282pl
dc.description.referencesJinShui Y, Jing C, GuanLan X, HongLi Y (2015) Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341 Bioresour Technol doi:10.1016/fbiortech.2014.10.124pl
dc.description.referencesJucoski GO, Cambraia J, Ribeiro C, Oliveira JA, Paula SO, Oliva MA (2013) Impact of iron toxicity on oxidative metabolism in young L. plants. Acta Physiol Plant doi: 10.1007/s11738-012-1207-4pl
dc.description.referencesKawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep doi: 10.1007/s00299-003-0591-zpl
dc.description.referencesLi Q, Chen LS, Jiang HX, Tang N, Yang LT, Lin ZH, Li Y, Yang GH (2010) Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grandis seedlings. BMC Plant Biology doi: 10.1186/1471-2229-10-42.pl
dc.description.referencesLiu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99, 4717-4722pl
dc.description.referencesLizieri C, Aguiar R, Kuki KN (2011) Manganese accumulation and its effects on three tropical aquatic macrophytes: Azalia caroliniana, Salvinia minima and Spirodela polyrhiza. Rodriguesia 62(4): 909-917pl
dc.description.referencesLowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275pl
dc.description.referencesLukae M, Aegerter R (1993) Influence of trace metais on growth and toxin production of Microcystis aeruginosa [Jl. Toxicon doi: 10.1016/0041-0101(93)90147-Bpl
dc.description.referencesMorgan MJ, Lehmann M, Schwarzländer M, Baxter CJ, Sienkiewicz-Porzucek A, Williams TCR, Schauer N, Fernie AR, Fricker MD, Ratcliffe RG, Sweetlove LJ, Finkemeier I (2008) Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. Plant Physiol doi: 10.1104/pp.107.113613pl
dc.description.referencesMousavi SR, Shahsavari M, Rezaei M (2011) A general overview on manganese (Mn) importance for crops production. Australian J Basic Appl Sci 5(9):1799-1803pl
dc.description.referencesNusrat J, Rafiq A (2011) Effect of foliar-applied Boron and manganese on growth and biochemical activities in sunflower under saline conditions. Pak J Bot 43(2):1271-1282pl
dc.description.referencesPeers G, Price NM (2004) A role for manganese in superoxide dismutases and growth of iron-deficient diatoms. Limnol. Oceanogr 49(5), 1774-1783pl
dc.description.referencesPietryczuk A, Biziewska I, Imierska M, Czerpak R (2014) Influence of traumatic acid on growth and metabolism of Chlorella vulgaris under conditions of salt stress. Plant Growth Regul doi: 10.1007/s10725-013-9872-xpl
dc.description.referencesPirson A, Lorenzen H (1966) Synchronized dividing algae. Ann Rew Plant Physiol 17: 439-458pl
dc.description.referencesPourgholam M, Nemati N, Oveysi M (2013) Effect of zinc and iron under the influence of drought on prolin, protein and nitrogen leaf of rapeseed (Brassica napus). Ann Biol Res 4(7): 200-203pl
dc.description.referencesPramod M, Deepali K, Arjun B (2014) Influence of Manganese and Zinc on Biochemical Profiles of Selected AIgal Species: A Laboratory Study.Bioremediation Journal doi: 10.1080/10889868.2014.889072pl
dc.description.referencesRamírez L, Bartoli CG, Lamattina L (2013) Glutathione and ascorbic acid protect Arabidopsis plants against detrimental effects of iron deficiency. J Exp Bot doi:10.1093/jxb/ert153pl
dc.description.referencesRousch JM, Sommerfeld MR (1999) Effect of manganese and nickel on growth of selected algae in pH buffered medium. Water Research 33(10): 2448-2454pl
dc.description.referencesRuangsomboon S (2012) Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresour Technol 109, 261-265pl
dc.description.referencesRuangsomboon S, Ganmanee M, Choochote S (2013) Effects of different nitrogen, phosphorus, and iron concentrations and salinity on lipid production in newly isolated strain of the tropical green microalga, Scenedesmus dimorphus KMITL. J Appl Phycol 25, 867-874pl
dc.description.referencesRusso MA, Giannetto S, Belligno A (2010) Influence of different nitrate and iron availabilities on phosphoenolpiruvate carboxilase and malate dehydrogenase in roots of maiz e (Zea mays L.) plants. Emir J Food Agric 22 (3): 162-173pl
dc.description.referencesSajedi N, Madani H, Naderi A (2011) Effect of microelements and selenium on superoxide dismutase enzyme, malondialdehyde activity and grain yield maize (Zea mays I.) under water deficit stress. Not Bot Horti Agrobo 39(2): 153-159pl
dc.description.referencesSelman M, Greenhalgh S, Diaz R, Sugg Z (2008) Eutrophication and hypoxia in coastal areas: A global assessment of the state of knowledge. WRI Policy Note 1: 1-6pl
dc.description.referencesSomogyi M (1954) Notes on sugar determination. J Biol Chem 195: 19-23pl
dc.description.referencesSilveira VC, Oliveira AP, Sperotto RA, Espindola LS, Amaral L, Dias JF, Cunha JB, Fett JP, (2007) Influence of iron on mineral status of two rice (Oryza sativa L.) cultivars. Braz J Plant Physiol 19(2): 127-139pl
dc.description.referencesUtkilen H, Gjølme N (1995) Iron-stimulated toxin production in Microcystis aeruginosa. Appl Environ Microb 61: 797-800pl
dc.description.referencesVan Goor BJ, Wiersma D (1976) Chemical forms of manganese and zinc in phloem exudates. Physiol Plantarum 36: 213-216pl
dc.description.referencesWellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144: 307-313pl
dc.description.referencesXing W, Huang W, Liu G (2010) Effect of excess iron and copper on physiology of aquatic plant Spirodela polyrrhiza (L.) Schleid Environ Toxicol doi: 10.1002/tox.20480pl
dc.description.referencesZaharieva TB, Abadia J (2003) Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots. Protoplasma 221(3-4):269-275pl
dc.description.firstpage74pl
dc.description.lastpage91pl
dc.identifier.citation2Modern problems and solutions in environmental protection. Post-conference monograph of Current Environmental Issues 2019, ed. by Joanna Karpińska, Marek Bartoszewicz, Róża Sawczukpl
dc.conferenceXIV Międzynarodowa Interdyscyplinarna Konferencja "Current Environmental Issues-2019", 24-26 września 2019 r.pl
Występuje w kolekcji(ach):Książki / Rozdziały (WUwB)
Materiały konferencyjne (WBiol)

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
A_Cudowski_A_Pietryczuk_Growth_and_metabolism_of_Chlorella_vulgaris.pdf858,56 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja jest chroniona prawem autorskim (Copyright © Wszelkie prawa zastrzeżone)