REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/15444
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorEndou, Noboru-
dc.date.accessioned2023-11-09T10:01:22Z-
dc.date.available2023-11-09T10:01:22Z-
dc.date.issued2023-
dc.identifier.citationFormalized Mathematics, Volume 31, Issue 1, Pages 131-141pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/15444-
dc.description.abstractIn this paper, we introduce indefinite integrals [8] (antiderivatives) and proof integration by substitution in the Mizar system [2], [3]. In our previous article [15], we have introduced an indefinite-like integral, but it is inadequate because it must be an integral over the whole set of real numbers and in some sense it causes some duplication in the Mizar Mathematical Library [13]. For this reason, to define the antiderivative for a function, we use the derivative of an arbitrary interval as defined recently in [7]. Furthermore, antiderivatives are also used to modify the integration by substitution and integration by parts. In the first section, we summarize the basic theorems on continuity and derivativity (for interesting survey of formalizations of real analysis in another proof-assistants like ACL2 [12], Isabelle/HOL [11], Coq [4], see [5]). In the second section, we generalize some theorems that were noticed during the formalization process. In the last section, we define the antiderivatives and formalize the integration by substitution and the integration by parts. We referred to [1] and [6] in our development.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectantiderivativepl
dc.subjectintegration by substitutionpl
dc.titleAntiderivatives and Integrationpl
dc.typeArticlepl
dc.rights.holder© 2023 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2023-0012-
dc.description.AffiliationNational Institute of Technology, Gifu College, 2236-2 Kamimakuwa, Motosu, Gifu, Japanpl
dc.description.referencesTom M. Apostol. Calculus, volume I. John Wiley & Sons, second edition, 1967.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesSylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Improving real analysis in Coq: A user-friendly approach to integrals and derivatives. In Chris Hawblitzel and Dale Miller, editors, Certified Programs and Proofs – Second International Conference, CPP 2012, Kyoto, Japan, December 13–15, 2012. Proceedings, volume 7679 of Lecture Notes in Computer Science, pages 289–304. Springer, 2012. doi:10.1007/978-3-642-35308-6_22.pl
dc.description.referencesSylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Formalization of real analysis: A survey of proof assistants and libraries. Mathematical Structures in Computer Science, 26:1196–1233, 2015.pl
dc.description.referencesRichard Courant and Edward James McShane. Differential and Integral Calculus. John Wiley & Sons, 1988.pl
dc.description.referencesNoboru Endou. Differentiation on interval. Formalized Mathematics, 31:9–21, 2023. doi:10.2478/forma-2023-0002.pl
dc.description.referencesNoboru Endou. Improper integral. Part II. Formalized Mathematics, 29(4):279–294, 2021. doi:10.2478/forma-2021-0024.pl
dc.description.referencesNoboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281–284, 2001.pl
dc.description.referencesNoboru Endou, Yasunari Shidama, and Masahiko Yamazaki. Integrability and the integral of partial functions from R into R. Formalized Mathematics, 14(4):207–212, 2006. doi:10.2478/v10037-006-0023-y.pl
dc.description.referencesJacques D. Fleuriot. On the mechanization of real analysis in Isabelle/HOL. In Mark Aagaard and John Harrison, editors, Theorem Proving in Higher Order Logics, pages 145–161. Springer Berlin Heidelberg, 2000. ISBN 978-3-540-44659-0.pl
dc.description.referencesRuben Gamboa. Continuity and Differentiability, pages 301–315. Springer US, 2000. ISBN 978-1-4757-3188-0. doi:10.1007/978-1-4757-3188-0_18.pl
dc.description.referencesAdam Grabowski and Christoph Schwarzweller. On duplication in mathematical repositories. In Serge Autexier, Jacques Calmet, David Delahaye, Patrick D. F. Ion, Laurence Rideau, Renaud Rioboo, and Alan P. Sexton, editors, Intelligent Computer Mathematics, 10th International Conference, AISC 2010, 17th Symposium, Calculemus 2010, and 9th International Conference, MKM 2010, Paris, France, July 5–10, 2010. Proceedings, volume 6167 of Lecture Notes in Computer Science, pages 300–314. Springer, 2010. doi:10.1007/978-3-642-14128-7_26.pl
dc.description.referencesSora Otsuki, Pauline N. Kawamoto, and Hiroshi Yamazaki. A simple example for linear partial differential equations and its solution using the method of separation of variables. Formalized Mathematics, 27(1):25–34, 2019. doi:10.2478/forma-2019-0003.pl
dc.description.referencesYasunari Shidama, Noboru Endou, and Katsumi Wasaki. Riemann indefinite integral of functions of real variable. Formalized Mathematics, 15(2):59–63, 2007. doi:10.2478/v10037-007-0007-6.pl
dc.identifier.eissn1898-9934-
dc.description.volume31pl
dc.description.issue1pl
dc.description.firstpage131pl
dc.description.lastpage141pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0002-5922-2332-
Występuje w kolekcji(ach):Formalized Mathematics, 2023, Volume 31, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
10.2478_forma-2023-0012.pdf269,17 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons