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Antiderivatives and Integration1
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Summary. In this paper, we introduce indefinite integrals [8] (antideri-
vatives) and proof integration by substitution in the Mizar system [2], [3]. In
our previous article [15], we have introduced an indefinite-like integral, but it is
inadequate because it must be an integral over the whole set of real numbers and
in some sense it causes some duplication in the Mizar Mathematical Library [13].
For this reason, to define the antiderivative for a function, we use the derivative
of an arbitrary interval as defined recently in [7]. Furthermore, antiderivatives
are also used to modify the integration by substitution and integration by parts.

In the first section, we summarize the basic theorems on continuity and
derivativity (for interesting survey of formalizations of real analysis in another
proof-assistants like ACL2 [12], Isabelle/HOL [11], Coq [4], see [5]). In the second
section, we generalize some theorems that were noticed during the formalization
process. In the last section, we define the antiderivatives and formalize the inte-
gration by substitution and the integration by parts. We referred to [1] and [6]
in our development.
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1. Basic Theorems on Continuity and Derivativity

From now on h, h1 denote 0-convergent, non-zero sequences of real numbers
and c, c1 denote constant sequences of real numbers. Let us observe that every
subset of R which is open interval is also open. Now we state the propositions:
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(1) Let us consider an interval I. If inf I ∈ I, then inf I = inf I.

(2) Let us consider an interval subset I of R. If sup I ∈ I, then sup I = sup I.

(3) Let us consider real numbers a, b, and an interval I. If a, b ∈ I, then
[a, b] ⊆ I.

Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(4) Suppose a < b and [a, b[ ⊆ dom f and f�[a, b[ is continuous and f is
differentiable on ]a, b[ and f ′�]a,b[ is right convergent in a. Then

(i) f is right differentiable in a, and

(ii) f ′+(a) = lima+ f ′�]a,b[.

Proof: Consider e being a real number such that a < e < b. For every h
and c such that rng c = {a} and rng(h+ c) ⊆ dom f and for every natural
number n, h(n) > 0 holds h−1 · ((f∗(h + c)) − (f∗c)) is convergent and
lim(h−1 · ((f∗(h+ c))− (f∗c))) = lima+ f ′�]a,b[. �

(5) Suppose a < b and ]a, b] ⊆ dom f and f�]a, b] is continuous and f is
differentiable on ]a, b[ and f ′�]a,b[ is left convergent in b. Then

(i) f is left differentiable in b, and

(ii) f ′−(b) = limb− f ′�]a,b[.

Proof: Consider e being a real number such that a < e < b. For every h
and c such that rng c = {b} and rng(h+ c) ⊆ dom f and for every natural
number n, h(n) < 0 holds h−1 · ((f∗(h + c)) − (f∗c)) is convergent and
lim(h−1 · ((f∗(h+ c))− (f∗c))) = limb− f ′�]a,b[. �

(6) Let us consider real numbers a, b, x, a partial function f from R to R,
and an interval I. Suppose inf I ¬ a and b ¬ sup I and I ⊆ dom f and
f�I is continuous and x ∈ ]a, b[. Then f is continuous in x.

(7) Let us consider an open subset X of R, and partial functions f , F from
R to R. Suppose X ⊆ dom f and f�X is continuous. Let us consider a real
number x. If x ∈ X, then f is continuous in x.

Let us consider real numbers a, b, x and a partial function f from R to R.
Now we state the propositions:

(8) Suppose a ¬ x < b and ]a, b[ ⊆ dom f and f is right convergent in x.
Then

(i) f�]a, b[ is right convergent in x, and

(ii) limx+(f�]a, b[) = limx+ f .

Proof: For every real number r such that x < r there exists a real number
g such that g < r and x < g and g ∈ dom(f�]a, b[). For every real number
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r such that 0 < r there exists a real number d such that x < d and for
every real number x1 such that x1 < d and x < x1 and x1 ∈ dom(f�]a, b[)
holds |(f�]a, b[)(x1)− limx+ f | < r. �

(9) Suppose a < x ¬ b and ]a, b[ ⊆ dom f and f is left convergent in x. Then

(i) f�]a, b[ is left convergent in x, and

(ii) limx−(f�]a, b[) = limx− f .

Proof: For every real number r such that r < x there exists a real number
g such that r < g < x and g ∈ dom(f�]a, b[). For every real number r
such that 0 < r there exists a real number d such that d < x and for
every real number x1 such that d < x1 < x and x1 ∈ dom(f�]a, b[) holds
|(f�]a, b[)(x1)− limx− f | < r. �

(10) Suppose [a, b] ⊆ dom f and f�[a, b] is continuous and x ∈ [a, b[. Then

(i) f is right convergent in x, and

(ii) limx+(f�]a, b[) = f(x).

Proof: For every real number r such that x < r there exists a real number
g such that g < r and x < g and g ∈ dom f . For every real number r such
that 0 < r there exists a real number s such that x < s and for every
real number x1 such that x1 < s and x < x1 and x1 ∈ dom f holds
|f(x1) − f(x)| < r. For every real number r such that 0 < r there exists
a real number s such that x < s and for every real number x1 such that
x1 < s and x < x1 and x1 ∈ dom(f�]a, b[) holds |(f�]a, b[)(x1)−f(x)| < r.
f�]a, b[ is right convergent in x and limx+(f�]a, b[) = limx+ f . �

(11) Suppose [a, b] ⊆ dom f and f�[a, b] is continuous and x ∈ ]a, b]. Then

(i) f is left convergent in x, and

(ii) limx−(f�]a, b[) = f(x).

Proof: For every real number r such that r < x there exists a real number
g such that r < g < x and g ∈ dom f . For every real number r such that
0 < r there exists a real number s such that s < x and for every real
number x1 such that s < x1 < x and x1 ∈ dom f holds |f(x1)− f(x)| < r.
For every real number r such that 0 < r there exists a real number s
such that s < x and for every real number x1 such that s < x1 < x
and x1 ∈ dom(f�]a, b[) holds |(f�]a, b[)(x1) − f(x)| < r. f�]a, b[ is left
convergent in x and limx−(f�]a, b[) = limx− f . �

Let us consider a real number x, a partial function f from R to R, a non
empty interval I, and a subset X of R. Now we state the propositions:

(12) If I ⊆ X and x ∈ I and x 6= sup I, then f is right differentiable in x iff
f�X is right differentiable in x.
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(13) If I ⊆ X and x ∈ I and x 6= inf I, then f is left differentiable in x iff
f�X is left differentiable in x.

(14) Let us consider a partial function f from R to R, an open subset I of R,
and a subset X of R. Suppose I ⊆ X. Then f is differentiable on I if and
only if f�X is differentiable on I.

Let us consider a partial function f from R to R, a non empty interval I,
and a subset X of R. Now we state the propositions:

(15) If I ⊆ X, then f is differentiable on interval I iff f�X is differentiable on
interval I. The theorem is a consequence of (1), (12), (2), (13), and (14).

(16) If I ⊆ X and f is differentiable on interval I, then f ′I = (f�X)′I . The
theorem is a consequence of (15), (1), and (2).

(17) Let us consider a partial function f from R to R, and non empty intervals
I, J . Suppose f is differentiable on interval I and J ⊆ I and inf J < sup J .
Then f ′I�J = f ′J .
Proof: For every element x of R such that x ∈ dom(f ′I�J) holds
(f ′I�J)(x) = f ′J(x). �

2. Generalization of Previous Theorems

Now we state the propositions:

(18) Let us consider extended real numbers a, b. If a < b, then there exists
a real number c such that a < c < b.

(19) Let us consider extended real numbers p, q, and a partial function f from
R to R. Suppose f is differentiable on ]p, q[ and for every real number x
such that x ∈ ]p, q[ holds f ′(x) = 0. Then f�]p, q[ is constant.

(20) Let us consider extended real numbers p, q, and partial functions f1, f2
from R to R. Suppose f1 is differentiable on ]p, q[ and f2 is differentiable on
]p, q[ and for every real number x such that x ∈ ]p, q[ holds f1′(x) = f2′(x).
Then

(i) (f1 − f2)�]p, q[ is constant, and

(ii) there exists a real number r such that for every real number x such
that x ∈ ]p, q[ holds f1(x) = f2(x) + r.

The theorem is a consequence of (19).

Let us consider extended real numbers p, q and a partial function f from R
to R. Now we state the propositions:

(21) Suppose f is differentiable on ]p, q[ and for every real number x such
that x ∈ ]p, q[ holds 0 < f ′(x). Then f�]p, q[ is increasing.
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(22) Suppose f is differentiable on ]p, q[ and for every real number x such
that x ∈ ]p, q[ holds f ′(x) < 0. Then f�]p, q[ is decreasing.

(23) Suppose f is differentiable on ]p, q[ and for every real number x such
that x ∈ ]p, q[ holds 0 ¬ f ′(x). Then f�]p, q[ is non-decreasing.

(24) Suppose f is differentiable on ]p, q[ and for every real number x such
that x ∈ ]p, q[ holds f ′(x) ¬ 0. Then f�]p, q[ is non-increasing.

(25) Let us consider an open subset X of R, a real number x0, and a partial
function f from R to R. Suppose x0 ∈ X and f is differentiable on X.
Then f ′(x0) = (f�X)′(x0).
Proof: ConsiderN being a neighbourhood of x0 such thatN ⊆ dom(f�X)
and there exists a linear function L and there exists a rest R such that
(f�X)′(x0) = L(1) and for every real number x such that x ∈ N holds
(f�X)(x)− (f�X)(x0) = L(x−x0) +R(x−x0). Consider L being a linear
function, R being a rest such that (f�X)′(x0) = L(1) and for every real
number x such that x ∈ N holds (f�X)(x) − (f�X)(x0) = L(x − x0) +
R(x−x0). For every real number x such that x ∈ N holds f(x)− f(x0) =
L(x− x0) +R(x− x0). �

(26) Let us consider real numbers a, b, and a partial function f from R to R.
Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous. Then there
exists a partial function F from R to R such that

(i) ]a, b[ ⊆ domF , and

(ii) for every real number x such that x ∈ ]a, b[ holds F (x) =
x∫
a

f(x)dx,

and

(iii) F is differentiable on ]a, b[, and

(iv) F ′�]a,b[ = f�]a, b[.

Proof: Consider x0 being a real number such that a < x0 < b. Consider
F being a partial function from R to R such that ]a, b[ ⊆ domF and for

every real number x such that x ∈ ]a, b[ holds F (x) =
x∫
a

f(x)dx and F

is differentiable in x0 and F ′(x0) = f(x0). For every real number x such
that x ∈ ]a, b[ holds F �]a, b[ is differentiable in x. For every element x of
R such that x ∈ domF ′�]a,b[ holds F ′�]a,b[(x) = (f�]a, b[)(x). �

(27) Let us consider real numbers a, b, and partial functions f , F from R
to R. Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous and
]a, b[ ⊆ domF and for every real number x such that x ∈ ]a, b[ holds
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F (x) =
x∫
a

f(x)dx. Then

(i) F is differentiable on ]a, b[, and

(ii) F ′�]a,b[ = f�]a, b[.

Proof: Consider G being a partial function from R to R such that ]a, b[ ⊆
domG and for every real number x such that x ∈ ]a, b[ holds G(x) =
x∫
a

f(x)dx and G is differentiable on ]a, b[ and G′�]a,b[ = f�]a, b[. For eve-

ry element x of R such that x ∈ dom(F �]a, b[) holds (F �]a, b[)(x) =
(G�]a, b[)(x). �

3. Antiderivatives and Related Theorems

Let f , F be partial functions from R to R and I be a non empty interval.
We say that F is antiderivative of f on I if and only if

(Def. 1) F is differentiable on interval I and F ′I = f�I.

Now we state the propositions:

(28) Let us consider partial functions f , F , g, G from R to R, and a non empty
interval I. Suppose F is antiderivative of f on I and G is antiderivative
of g on I. Then

(i) F +G is antiderivative of f + g on I, and

(ii) F −G is antiderivative of f − g on I.

(29) Let us consider partial functions f , F from R to R, a non empty interval
I, and a real number r. If F is antiderivative of f on I, then r · F is
antiderivative of r · f on I.

Let us consider partial functions f , g, F , G from R to R and a non empty
interval I. Now we state the propositions:

(30) If F is antiderivative of f on I and G is antiderivative of g on I, then
F ·G is antiderivative of f ·G+ F · g on I.

(31) Suppose F is antiderivative of f on I and G is antiderivative of g on I and
for every set x such that x ∈ I holds G(x) 6= 0. Then FG is antiderivative
of f ·G−F ·gG·G on I.

(32) Let us consider real numbers a, b, and partial functions f , F from R
to R. Suppose a ¬ b and [a, b] ⊆ dom f and f�[a, b] is continuous and
[a, b] ⊆ domF and for every real number x such that x ∈ [a, b] holds
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F (x) =
x∫
a

f(x)dx. Let us consider a real number x. Suppose x ∈ ]a, b[.

Then

(i) F is differentiable in x, and

(ii) F ′(x) = f(x).

Proof: Set O = ]a, b[. Define G0(real number) = (

$1∫
a

f(x)dx)(∈ R). Con-

sider G1 being a function from R into R such that for every element h of
R, G1(h) = G0(h). Reconsider G = G1�O as a partial function from R to
R. For every real number x such that x ∈ O holds G is differentiable in x
and G′(x) = f(x) by (6), [9, (10),(11)]. For every real number x such that
x ∈ ]a, b[ holds F is differentiable in x and F ′(x) = f(x) by [14, (2)]. �

Let us consider real numbers a, b and partial functions f , F from R to R.
Now we state the propositions:

(33) Suppose a ¬ b and [a, b] ⊆ dom f and f�[a, b] is bounded and f is
integrable on [a, b] and [a, b] = domF and for every real number x such

that x ∈ [a, b] holds F (x) =
x∫
a

f(x)dx. Then F is Lipschitzian.

Proof: Consider r0 being a real number such that for every object x such
that x ∈ [a, b]∩dom f holds |f(x)| ¬ r0. Reconsider r = max(r0, 1) as a real
number. For every real numbers p, q such that p, q ∈ [a, b] and p ¬ q holds
f is integrable on [p, q] and f�[p, q] is bounded. For every real numbers x1,
x2 such that x1, x2 ∈ domF holds |F (x1)− F (x2)| ¬ r · |x1 − x2| by [10,
(20),(23)]. �

(34) Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous and [a, b] ⊆
domF and for every real number x such that x ∈ [a, b] holds F (x) =
x∫
a

f(x)dx. Then F ′�]a,b[ is right convergent in a and left convergent in b.

Proof: For every real number x such that x ∈ ]a, b[ holds F �]a, b[ is
differentiable in x. For every element x of R such that x ∈ domF ′�]a,b[
holds F ′�]a,b[(x) = (f�]a, b[)(x). For every real number r such that a < r
there exists a real number g such that g < r and a < g and g ∈ domF ′�]a,b[.
For every real number g1 such that 0 < g1 there exists a real number r
such that a < r and for every real number r1 such that r1 < r and a < r1
and r1 ∈ domF ′�]a,b[ holds |F ′�]a,b[(r1) − f(a)| < g1. For every real number
r such that r < b there exists a real number g such that r < g < b and
g ∈ domF ′�]a,b[. For every real number g1 such that 0 < g1 there exists
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a real number r such that r < b and for every real number r1 such that
r < r1 < b and r1 ∈ domF ′�]a,b[ holds |F ′�]a,b[(r1)− f(b)| < g1. �

(35) Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous and [a, b] ⊆
domF and for every real number x such that x ∈ [a, b] holds F (x) =
x∫
a

f(x)dx. Then

(i) F is right differentiable in a, and

(ii) F ′+(a) = lima+ F ′�]a,b[.

Proof: For every real number x such that x ∈ ]a, b[ holds F �]a, b[ is
differentiable in x. F ′�]a,b[ is right convergent in a. For every real number x

such that x ∈ [a, b] holds (F �[a, b])(x) =
x∫
a

f(x)dx. F �[a, b[ is Lipschitzian.

�

(36) Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous and [a, b] ⊆
domF and for every real number x such that x ∈ [a, b] holds F (x) =
x∫
a

f(x)dx. Then

(i) F is left differentiable in b, and

(ii) F ′−(b) = limb− F ′�]a,b[.

Proof: For every real number x such that x ∈ ]a, b[ holds F �]a, b[ is
differentiable in x. F ′�]a,b[ is left convergent in b. For every real number x

such that x ∈ [a, b] holds (F �[a, b])(x) =
x∫
a

f(x)dx. F �]a, b] is Lipschitzian.

�

(37) Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous and [a, b] ⊆
domF and for every real number x such that x ∈ [a, b] holds F (x) =
x∫
a

f(x)dx. Then

(i) F is differentiable on interval [a, b], and

(ii) F ′[a,b] = f�[a, b].

Proof: Reconsider I = [a, b] as a non empty interval. If inf I ∈ I, then
F is right differentiable in inf I. If sup I ∈ I, then F is left differentiable
in sup I. For every real number x such that x ∈ ]a, b[ holds F �]a, b[ is
differentiable in x. F ′�]a,b[ = f�]a, b[. For every element x of R such that
x ∈ domF ′[a,b] holds F ′[a,b](x) = (f�[a, b])(x). �
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(38) Let us consider a partial function f from R to R, and real numbers a, b.

Then
a∫
b

f(x)dx = −
b∫
a

f(x)dx.

(39) Let us consider real numbers a, b, and partial functions f , F from R
to R. Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous and
[a, b] ⊆ domF and for every real number x such that x ∈ [a, b] holds

F (x) =
x∫
a

f(x)dx. Let us consider a real number x. Suppose x ∈ ]a, b[.

Then

(i) F is differentiable in x, and

(ii) F ′(x) = f(x).

The theorem is a consequence of (37).

(40) Let us consider real numbers a, b, and a partial function f from R to R.
Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous. Then there
exists a partial function F from R to R such that

(i) F is antiderivative of f on [a, b], and

(ii) for every real number x such that x ∈ [a, b] holds F (x) =
x∫
a

f(x)dx.

The theorem is a consequence of (37).

(41) Let us consider a real number c, partial functions f , F , G from R to R,
and a non empty interval I. Suppose I ⊆ dom f and F is antiderivative of
f on I and I ⊆ domG and for every real number x such that x ∈ I holds
G(x) = F (x) + c. Then G is antiderivative of f on I.
Proof: Reconsider c0 = c as an element of R. Define F(element of R) =
c0. Consider F0 being a function from R into R such that for every element
x of R, F0(x) = F(x). F �I is differentiable on interval I. G is differentiable
on interval I. �

(42) Let us consider partial functions f , F from R to R, and non empty
intervals I, J . Suppose inf I < sup I and I ⊆ J and F is antiderivative of
f on J . Then F is antiderivative of f on I.

(43) Let us consider real numbers a, b, a partial function f from R to R, and
a partitionD of [a, b]. Suppose a < b and f is differentiable on interval [a, b]
and f ′[a,b] is bounded. Then lower sum(f ′[a,b] � [a, b], D) ¬ f(b) − f(a) ¬
upper sum(f ′[a,b] � [a, b], D).

(44) Let us consider a partial function f from R to R, real numbers a, b, and
a non empty interval I. Suppose a, b ∈ I and a < b and f is differentiable
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on interval I and f ′I is integrable on [a, b] and f ′I is bounded. Then

(i)
b∫
a

f ′[a,b](x)dx = f(b)− f(a), and

(ii)
b∫
a

f ′I(x)dx = f(b)− f(a).

The theorem is a consequence of (3) and (17).

(45) Let us consider a partial function f from R to R, a real number a, and
a non empty interval I. Suppose f is differentiable on interval I and a ∈ I.

Then
a∫
a

f ′I(x)dx = 0. The theorem is a consequence of (3).

(46) Let us consider partial functions f , F , G from R to R, and a non empty
interval I. Suppose F is antiderivative of f on I and G is antiderivative of
f on I. Then there exists a real number c such that for every real number
x such that x ∈ I holds F (x) = G(x) + c. The theorem is a consequence
of (42), (1), (2), and (18).

(47) Integration by substitution:
Let us consider real numbers a, b, p, q, and partial functions f , g from R to
R. Suppose a < b and p < q and [a, b] ⊆ dom f and f�[a, b] is continuous
and g is differentiable on interval [p, q] and g′[p,q] is integrable on [p, q] and
g′[p,q] is bounded and rng(g�[p, q]) ⊆ [a, b] and g(p) = a and g(q) = b. Then
b∫
a

f(x)dx =

q∫
p

(f · g · g′[p,q])(x)dx. The theorem is a consequence of (37).

(48) Let us consider real numbers a, b, and partial functions f , g from R
to R. Suppose a < b and f is differentiable on interval [a, b] and g is
differentiable on interval [a, b] and f ′[a,b] is integrable on [a, b] and f ′[a,b]
is bounded and g′[a,b] is integrable on [a, b] and g′[a,b] is bounded. Then
b∫
a

(f ′[a,b] · g)(x)dx = f(b) · g(b)− f(a) · g(a)−
b∫
a

(f · g′[a,b])(x)dx.
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