REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/15427
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorNelson, Alexander M.-
dc.date.accessioned2023-10-30T13:44:38Z-
dc.date.available2023-10-30T13:44:38Z-
dc.date.issued2023-
dc.identifier.citationFormalized Mathematics, Volume 31, Issue 1, Pages 101-120pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/15427-
dc.description.abstractThis is a “quality of life” article concerning product groups, using the Mizar system [2], [4]. Like a Sonata, this article consists of three movements. The first act, the slowest of the three, builds the infrastructure necessary for the rest of the article. We prove group homomorphisms map arbitrary finite products to arbitrary finite products, introduce a notion of “group yielding” families, as well as families of homomorphisms. We close the first act with defining the inclusion morphism of a subgroup into its parent group, and the projection morphism of a product group onto one of its factors. The second act introduces the universal property of products and its consequences as found in, e.g., Kurosh [7]. Specifically, for the product of an arbitrary family of groups, we prove the center of a product group is the product of centers. More exciting, we prove for a product of a finite family groups, the commutator subgroup of the product is the product of commutator subgroups, but this is because in general: the direct sum of commutator subgroups is the subgroup of the commutator subgroup of the product group, and the commutator subgroup of the product is a subgroup of the product of derived subgroups. We conclude this act by proving a few theorems concerning the image and kernel of morphisms between product groups, as found in Hungerford [5], as well as quotients of product groups. The third act introduces the notion of an internal direct product. Isaacs [6] points out (paraphrasing with Mizar terminology) that the internal direct product is a predicate but the external direct product is a [Mizar] functor. To our delight, we find the bulk of the “recognition theorem” (as stated by Dummit and Foote [3], Aschbacher [1], and Robinson [11]) are already formalized in the heroic work of Nakasho, Okazaki, Yamazaki, and Shimada [9], [8]. We generalize the notion of an internal product to a set of subgroups, proving it is equivalent to the internal product of a family of subgroups [10].pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectdirect product of groupspl
dc.titleInternal Direct Products and the Universal Property of Direct Product Groupspl
dc.typeArticlepl
dc.rights.holder© 2023 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2023-0010-
dc.description.AffiliationLos Angeles, California, United States of Americapl
dc.description.referencesMichael Aschbacher. Finite Group Theory, volume 10. Cambridge University Press, 2000.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesDavid S. Dummit and Richard M. Foote. Abstract Algebra. Wiley and Sons, Third edition, 2004.pl
dc.description.referencesAdam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of Annals of Computer Science and Information Systems, pages 363–371, 2016. doi:10.15439/2016F520.pl
dc.description.referencesThomas W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics. SpringerVerlag New York Inc., Seattle, Washington USA, Department of Mathematics University of Washington edition, 1974.pl
dc.description.referencesI. Martin Isaacs. Finite Group Theory, volume 92 of Graduate Studies in Mathematics. American Mathematical Society, 2008.pl
dc.description.referencesAleksandr Gennadievich Kurosh. The Theory of Groups, volume 1. Chelsea Publishing Company, 1955.pl
dc.description.referencesKazuhisa Nakasho, Hiroyuki Okazaki, Hiroshi Yamazaki, and Yasunari Shidama. Equivalent expressions of direct sum decomposition of groups. Formalized Mathematics, 23(1): 67–73, 2015. doi:10.2478/forma-2015-0006.pl
dc.description.referencesKazuhisa Nakasho, Hiroshi Yamazaki, Hiroyuki Okazaki, and Yasunari Shidama. Definition and properties of direct sum decomposition of groups. Formalized Mathematics, 23(1):15–27, 2015. doi:10.2478/forma-2015-0002.pl
dc.description.referencesAlexander M. Nelson. Characteristic subgroups. Formalized Mathematics, 30(2):79–91, 2022. doi:10.2478/forma-2022-0007.pl
dc.description.referencesDerek Robinson. A Course in the Theory of Groups. Springer New York, 2012.pl
dc.identifier.eissn1898-9934-
dc.description.volume31pl
dc.description.issue1pl
dc.description.firstpage101pl
dc.description.lastpage120pl
dc.identifier.citation2Formalized Mathematicspl
Występuje w kolekcji(ach):Formalized Mathematics, 2023, Volume 31, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
10.2478_forma-2023-0010.pdf313,83 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons