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Summary. This is a “quality of life” article concerning product groups,
using the Mizar system [2], [4]. Like a Sonata, this article consists of three mo-
vements.

The first act, the slowest of the three, builds the infrastructure necessary
for the rest of the article. We prove group homomorphisms map arbitrary finite
products to arbitrary finite products, introduce a notion of “group yielding”
families, as well as families of homomorphisms. We close the first act with defining
the inclusion morphism of a subgroup into its parent group, and the projection
morphism of a product group onto one of its factors.

The second act introduces the universal property of products and its conse-
quences as found in, e.g., Kurosh [7]. Specifically, for the product of an arbitrary
family of groups, we prove the center of a product group is the product of centers.
More exciting, we prove for a product of a finite family groups, the commutator
subgroup of the product is the product of commutator subgroups, but this is
because in general: the direct sum of commutator subgroups is the subgroup of
the commutator subgroup of the product group, and the commutator subgroup
of the product is a subgroup of the product of derived subgroups. We conclude
this act by proving a few theorems concerning the image and kernel of morphi-
sms between product groups, as found in Hungerford [5], as well as quotients of
product groups.

The third act introduces the notion of an internal direct product. Isaacs [6]
points out (paraphrasing with Mizar terminology) that the internal direct pro-
duct is a predicate but the external direct product is a [Mizar] functor. To our
delight, we find the bulk of the “recognition theorem” (as stated by Dummit and
Foote [3], Aschbacher [1], and Robinson [11]) are already formalized in the heroic
work of Nakasho, Okazaki, Yamazaki, and Shimada [9], [8]. We generalize the
notion of an internal product to a set of subgroups, proving it is equivalent to
the internal product of a family of subgroups [10].
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1. Preliminaries

Now we state the propositions:

(1) Let us consider sets X, Y, Z, W . Suppose Z 6= ∅ and W 6= ∅. Let us
consider a function f from X×Y into Z, and a function g from X×Y into
W . If for every element a of X for every element b of Y, f(a, b) = g(a, b),
then f = g.

(2) Let us consider a finite set A. Then CFS(A) is a many sorted set indexed
by Seg A .

(3) Let us consider non empty sets X, Y, and a function f from X into Y.
Suppose f is onto. Then there exists a function g from Y into X such that
f · g = idY .
Proof: Define P[object, object] ≡ $1 = f($2). For every object y such
that y ∈ Y there exists an object x such that x ∈ X and P[y, x]. Consider
g being a function from Y into X such that for every object y such that
y ∈ Y holds P[y, g(y)]. For every element y of Y, (f · g)(y) = y. �

Let I be a non empty set, A, B be many sorted sets indexed by I, f be
a many sorted function from A into B, and i be an element of I. Let us observe
that the functor f(i) yields a function from A(i) into B(i). Let F1, F2 be 1-sorted
yielding many sorted sets indexed by I.

A many sorted function from F1 into F2 is a many sorted function from
the support of F1 into the support of F2. Let ϕ be a many sorted function from
F1 into F2 and i be an element of I. Note that the functor ϕ(i) yields a function
from F1(i) into F2(i). Now we state the proposition:

(4) Let us consider a non empty set I, many sorted sets A, B indexed by I,
and a many sorted set f indexed by I. Then f is a many sorted function
from A into B if and only if for every element i of I, f(i) is a function
from A(i) into B(i).

Let I, X be sets. Observe that there exists a many sorted set indexed by I
which is (2X)-valued.

Let M be a (2X)-valued many sorted set indexed by I. One can check that
the functor

⋃
M yields a subset of X. Let I be a set, J be a subset of I, and

F be a many sorted set indexed by I. One can check that F �J is J-defined and
total.

http://fm.mizar.org/miz/group_23.miz
http://ftp.mizar.org/
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Let F be a 1-sorted yielding many sorted set indexed by I. Observe that
F �J is 1-sorted yielding, J-defined, and total. Now we state the proposition:

(5) Let us consider a non empty set I, a many sorted set M indexed by I,
and an object y. Then y ∈ rngM if and only if there exists an element i
of I such that y = M(i).

2. Sequences of Group Elements under Homomorphisms

Now we state the propositions:

(6) Let us consider groups G1, G2, a homomorphism ϕ from G1 to G2,
a finite sequence F1 of elements of the carrier of G1, and a finite sequence
F2 of elements of the carrier of G2. If F2 = ϕ · F1, then

∏
F2 = ϕ(

∏
F1).

Proof: Define P[finite sequence of elements of the carrier ofG1] ≡ ϕ(
∏

$1)
=
∏
ϕ · $1. P[εα], where α is the carrier of G1. For every finite sequence

p0 of elements of the carrier of G1 and for every element x of the carrier
of G1 such that P[p0] holds P[p0 a 〈x〉]. For every finite sequence p0 of
elements of the carrier of G1, P[p0]. �

(7) Let us consider groups G1, G2, a homomorphism ϕ from G1 to G2, and
a finite sequence F1 of elements of the carrier of G1. Then there exists
a finite sequence F2 of elements of the carrier of G2 such that

(i) lenF1 = lenF2, and

(ii) F2 = ϕ · F1, and

(iii)
∏
F2 = ϕ(

∏
F1).

Proof: Set n1 = lenF1. Define P[object, object] ≡ there exists a natural
number k such that k = $1 and $2 = ϕ(F1(k)). For every natural number
k such that k ∈ Seg n1 there exists an object x such that P[k, x]. Consider
p being a finite sequence such that dom p = Seg n1 and for every natural
number k such that k ∈ Seg n1 holds P[k, p(k)]. p = ϕ · F1. �

(8) Let us consider groups G1, G2, a homomorphism ϕ from G1 to G2,
a finite sequence F1 of elements of the carrier of G1, and a finite sequence
k1 of elements of Z. Then there exists a finite sequence F2 of elements of
the carrier of G2 such that

(i) lenF1 = lenF2, and

(ii) F2 = ϕ · F1, and

(iii)
∏
F2

k1 = ϕ(
∏
F1

k1).

Proof: Consider F2 being a finite sequence of elements of the carrier of G2
such that lenF1 = lenF2 and F2 = ϕ · F1 and

∏
F2 = ϕ(

∏
F1). For every

natural number k such that k ∈ domF2
k1 holds (ϕ ·F1k1)(k) = F2

k1(k). �
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3. Preliminary Work about Group-families and Group-yielding
Many Sorted Sets

Let I2 be a binary relation. We say that I2 is group yielding if and only if

(Def. 1) for every object G such that G ∈ rng I2 holds G is a group.

One can check that every function which is group yielding is also 1-sorted
yielding and every function which is group yielding is also multiplicative magma
yielding. Now we state the proposition:

(9) Let us consider a set I. Then every associative, group-like multiplicative
magma family of I is group yielding.

Let I be a set. One can check that there exists a many sorted set indexed
by I which is group yielding and every multiplicative magma family of I which
is associative and group-like is also group yielding and there exists a function
which is group yielding. Now we state the proposition:

(10) Let us consider a non empty set I, a group yielding many sorted set F
indexed by I, and an element i of I. Then F (i) is a group.

Let I be a non empty set, i be an element of I, and F be a group yielding
many sorted set indexed by I. Note that F (i) is group-like, associative, unital,
and non empty as a multiplicative magma. Now we state the proposition:

(11) Let us consider a set I, and a many sorted set F indexed by I. Then
F is group yielding if and only if for every object i such that i ∈ I holds
F (i) is a group.

Let I be a set. Let us observe that every multiplicative magma family of I
which is group yielding is also group-like and associative and every group-like,
associative multiplicative magma family of I is group yielding and every group
yielding many sorted set indexed by I is group-like, associative, and multiplica-
tive magma yielding.

From now on I denotes a non empty set, i denotes an element of I, F denotes
a group family of I, and G denotes a group. Now we state the propositions:

(12) ∅ 7−→ G is a group family of ∅.
(13) Let us consider a natural number n. Then Seg n 7−→ G is a group family

of Seg n. The theorem is a consequence of (12).

LetG be a group and n be a natural number. One can verify that Seg n 7−→ G

is group yielding. Now we state the proposition:

(14) (The support of F )(i) = the carrier of F (i).

The scheme GrFamSch deals with a non empty set I1 and a unary functor
A yielding a group and states that
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(Sch. 1) There exists a group family F of I1 such that for every element i of I1,
F(i) = A(i).

4. Subgroup-family of a Family of Groups

Let I be a set and F , I2 be group families of I. We say that I2 is F -subgroup
yielding if and only if

(Def. 2) for every element i of I and for every group G such that G = F (i) holds
I2(i) is a subgroup of G.

Now we state the propositions:

(15) Let us consider a group family S of I. Then S is F -subgroup yielding if
and only if for every element i of I, S(i) is a subgroup of F (i).

(16) Let us consider a set I. Then every group family of I is F -subgroup
yielding.

Let I be a set and F be a group family of I. Let us observe that there exists
a group family of I which is F -subgroup yielding.

A subgroup family of F is an F -subgroup yielding group family of I. Let I
be a non empty set, S be a subgroup family of F , and i be an element of I.
Let us observe that the functor S(i) yields a subgroup of F (i). From now on S

denotes a subgroup family of F . Now we state the proposition:

(17) Let us consider a group family S of I. Then S is a subgroup family of F
if and only if for every element i of I, S(i) is a subgroup of F (i).

The scheme SubFamSch deals with a non empty set I1 and a group family
F of I1 and a unary functor S yielding a group and states that

(Sch. 2) There exists a subgroup family S of F such that for every element i of
I1, S(i) = S(F(i))

provided

• for every group G, S(G) is a subgroup of G.

Let I be a non empty set and I2 be a group family of I. We say that I2 is
componentwise strict if and only if

(Def. 3) for every element i of I, I2(i) is strict.

One can check that there exists a group family of I which is componentwise
strict. Now we state the proposition:

(18) Let us consider a non empty set I, a group family F of I, and a subgroup
family I2 of F . Then I2 is componentwise strict if and only if for every
element i of I, I2(i) is a strict subgroup of F (i).
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Let I be a non empty set and F be a group family of I. One can verify that
there exists a subgroup family of F which is componentwise strict. Let S be
a componentwise strict subgroup family of F and i be an element of I. Note
that S(i) is strict as a subgroup of F (i).

The scheme StrSubFamSch deals with a non empty set I1 and a group family
F of I1 and a unary functor S yielding a group and states that

(Sch. 3) There exists a componentwise strict subgroup family S of F such that
for every element i of I1, S(i) = S(F(i))

provided

• for every group G, S(G) is a strict subgroup of G.

Now we state the proposition:

(19) Let us consider subgroup families A, B of F . If for every element i of I,
A(i) = B(i), then A = B.

Let I be a non empty set and F be a group family of I. The functor {1}F
yielding a componentwise strict subgroup family of F is defined by

(Def. 4) for every element i of I, it(i) = {1}F (i).
The functor ΩF yielding a componentwise strict subgroup family of F is

defined by

(Def. 5) for every element i of I, it(i) = ΩF (i).

Let I2 be a subgroup family of F . We say that I2 is normal if and only if

(Def. 6) for every element i of I, I2(i) is a normal subgroup of F (i).

Let us note that there exists a subgroup family of F which is componentwise
strict and normal. Let S be a normal subgroup family of F and i be an element
of I. One can check that S(i) is normal as a subgroup of F (i).

Let S be a componentwise strict subgroup family of F . Note that S(i) is
strict as a subgroup of F (i) and {1}F is normal and ΩF is normal. Let N be
a normal subgroup family of F . The functor F /N yielding a group family of I
is defined by

(Def. 7) for every element i of I, it(i) = F (i)/N(i).

Observe that F /N is componentwise strict. Now we state the propositions:

(20) There exists a componentwise strict, normal subgroup family S of F
such that for every element i of I, S(i) = F (i)c.
Proof: Define A(group) = $1c. Consider S being a componentwise strict
subgroup family of F such that for every element i of I, S(i) = A(F (i)).
For every element i of I, S(i) is a normal subgroup of F (i). �
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(21) Let us consider a strict multiplicative magma M . Suppose there exists
an object x such that the carrier of M = {x}. Then there exists a strict,
trivial group G such that M = G.

(22) Let us consider an empty set I, and a multiplicative magma family F of
I. Then

∏
F is a trivial group. The theorem is a consequence of (21).

5. Inclusion Morphism

Let G, H be groups. Assume H is a subgroup of G. The functor incl(H,G)
yielding a homomorphism from H to G is defined by the term

(Def. 8) idα, where α is the carrier of H.

Let G be a group and H be a subgroup of G. The functor H
↪→ yielding

a homomorphism from H to G is defined by the term

(Def. 9) incl(H,G).

Now we state the propositions:

(23) Let us consider a group H, and an element h of H. If H is a subgroup
of G, then (incl(H,G))(h) = h.

(24) Let us consider a subgroup H of G. Then

(i) incl(H,G) is one-to-one, and

(ii) Im incl(H,G) = the multiplicative magma of H.

Proof: Set f = incl(H,G). Ker f = {1}H . �

Let G be a group and H be a subgroup of G. Let us observe that incl(H,G)
is one-to-one. Now we state the propositions:

(25) Let us consider groups H, K. Suppose H is a subgroup of G. Let us
consider a homomorphism ϕ from G to K. Then ϕ�(the carrier of H) =
ϕ · (incl(H,G)).
Proof: dom(ϕ�(the carrier of H)) = the carrier of H. For every object x
such that x ∈ dom(ϕ�(the carrier of H)) holds (ϕ�(the carrier of H))(x) =
(ϕ · (incl(H,G)))(x). �

(26) Let us consider a group K, a subgroup H of G, and a homomorphism ϕ

from G to K. Then ϕ�H = ϕ · ( H↪→).

Proof: For every element h of H, (ϕ�H)(h) = (ϕ · ( H↪→))(h). �

(27) Let us consider a group G, and a strict subgroup H of G. Then Im( H↪→) =
H.
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6. Families of Homomorphisms

Let G be a group, I be a non empty set, and F be a group family of I.
A homomorphism family of G and F is a many sorted function indexed by

I defined by

(Def. 10) for every element i of I, it(i) is a homomorphism from G to F (i).

Let f be a homomorphism family of G and F and i be an element of I.
One can check that the functor f(i) yields a homomorphism from G to F (i).
In the sequel f denotes a homomorphism family of G and F . Now we state the
proposition:

(28) 〈〈i, f(i)〉〉 ∈ f .

Let I be a non empty set and F1, F2 be group families of I.
A homomorphism family of F1 and F2 is a many sorted function from F1

into F2 defined by

(Def. 11) for every element i of I, it(i) is a homomorphism from F1(i) to F2(i).

Let i be an element of I and ϕ be a homomorphism family of F1 and F2.
Note that ϕ(i) is multiplicative as a function from F1(i) into F2(i). Now we
state the proposition:

(29) Let us consider a non empty set I, group families A, B of I, and a many
sorted set f indexed by I. Then f is a homomorphism family of A and B
if and only if for every element i of I, f(i) is a homomorphism from A(i)
to B(i). The theorem is a consequence of (14).

The scheme HomFamSch deals with a non empty set I1 and a group family
D1 of I1 and a group family C of I1 and a unary functor A yielding a function
and states that

(Sch. 4) There exists a homomorphism family H of D1 and C such that for every
element i of I1, H(i) = A(i)

provided

• for every element i of I1, A(i) is a homomorphism from D1(i) to C(i).

Now we state the proposition:

(30) Let us consider a group G, a non empty set I, a group family F of I,
and a many sorted set f indexed by I. Then f is a homomorphism family
of G and F if and only if for every element i of I, f(i) is a homomorphism
from G to F (i).

The scheme RHomFamSch deals with a non empty set I1 and a group D1
and a group family C of I1 and a unary functor A yielding a function and states
that
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(Sch. 5) There exists a homomorphism family H of D1 and C such that for every
element i of I1, H(i) = A(i)

provided

• for every element i of I1, A(i) is a homomorphism from D1 to C(i).

Now we state the proposition:

(31) Let us consider a non empty set I, group families A, B of I, and a many
sorted set f indexed by I. Then f is a homomorphism family of A and B
if and only if for every element i of I, f(i) is a homomorphism from A(i)
to B(i). The theorem is a consequence of (14).

7. Projection Morphisms from Product Group to Direct Factors

Now we state the proposition:

(32) Let us consider an element g of
∏
F . Then g(i) is an element of F (i).

Let I be a non empty set, F be a group family of I, g be an element of
∏
F ,

and i be an element of I. The functor g/i yielding an element of F (i) is defined
by the term

(Def. 12) g(i).

We identify g(i) with g/i. The functor proj(F, i) yielding a homomorphism
from

∏
F to F (i) is defined by

(Def. 13) for every element h of
∏
F , it(h) = h(i).

Now we state the proposition:

(33) proj(F, i) is onto.
Proof: For every object y such that y ∈ the carrier of F (i) there exists
an object x such that x ∈ the carrier of

∏
F and y = (proj(F, i))(x). �

Let I be a non empty set, F be a group family of I, and i be an element of
I. Let us observe that proj(F, i) is onto. Now we state the propositions:

(34) proj(the support of F, i) is a function from
∏

(the support of F ) into
the carrier of F (i).

(35) Let us consider an element g of
∏
F .

Then (proj(F, i))(g) = (proj(the support of F, i))(g).

(36) proj(F, i) = proj(the support of F, i). The theorem is a consequence of
(34) and (35).

(37) Let us consider an element g of
∏
F , and an element h of F (i). Then

g +· (i, h) ∈
∏
F .

(38) Let us consider an element i of I, and an element g of
∏
F . Then g +·

(i,1F (i)) ∈ Ker proj(F, i). The theorem is a consequence of (37).
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(39) Let us consider groups G1, G2, and a homomorphism f from G1 to G2.
If for every element g of G1, f(g) = g, then G1 is a subgroup of G2.
Proof: The carrier of G1 ⊆ the carrier of G2. Set U1 = the carrier of G1.
For every element a of U1 and for every element b of U1, (the multiplication
of G1)(a, b) = ((the multiplication of G2) � U1)(a, b). (The multiplication
of G2) � U1 is a binary operation on U1. �

(40) Let us consider elements i, j of I. Suppose i 6= j. Then (proj(F, j)) ·
(1ProdHom(F, i)) = F (i)→ {1}F (j).
Proof: Set U = the carrier of F (i). dom(F (i) → {1}F (j)) = U and
dom((proj(F, j)) · (1ProdHom(F, i))) = U . For every element x of U ,
((proj(F, j)) · (1ProdHom(F, i)))(x) = (F (i)→ {1}F (j))(x). �

(41) (proj(F, i)) · (1ProdHom(F, i)) = idα, where α is the carrier of F (i).
Proof: Set U = the carrier of F (i). For every element x of U , ((proj(F, i))·
(1ProdHom(F, i)))(x) = x. �

8. Universal Property of Direct Products of Groups

Let us consider a homomorphism family f of G and F . Now we state the
propositions:

(42) There exists a homomorphism ϕ from G to
∏
F such that for every

element g of G for every element j of I, (f(j))(g) = (proj(F, j))(ϕ(g)).
Proof: Define P[object, object] ≡ there exists an element g0 of

∏
F such

that $2 = g0 and for every element j of I, f(j)($1) = g0(j). Define F =
the carrier of G. For every object x such that x ∈ F there exists an object
y such that y ∈ the carrier of

∏
F and P[x, y]. Consider ϕ being a function

from F into the carrier of
∏
F such that for every object x such that x ∈ F

holds P[x, ϕ(x)]. For every element g of G and for every element j of I,
ϕ(g)(j) = f(j)(g). For every elements a, b of G, ϕ(a · b) = ϕ(a) ·ϕ(b). For
every element j of I, (f(j))(g) = (proj(F, j))(ϕ(g)). �

(43) There exists a homomorphism ϕ from G to
∏
F such that for every

element i of I, f(i) = (proj(F, i)) · ϕ.
Proof: Consider ϕ being a homomorphism from G to

∏
F such that for

every element g of G and for every element j of I, (f(j))(g) = (proj(F, j))
(ϕ(g)). For every element g of G, ((proj(F, i)) · ϕ)(g) = f(i)(g). �

(44) Let us consider a homomorphism family f of G and F , and homo-
morphisms ϕ1, ϕ2 from G to

∏
F . Suppose for every element i of I,

f(i) = (proj(F, i)) ·ϕ1 and for every element i of I, f(i) = (proj(F, i)) ·ϕ2.
Then ϕ1 = ϕ2.
Proof: For every element g of G, ϕ1(g) = ϕ2(g). �
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Let G be a group, I be a non empty set, F be a group family of I, and f be
a homomorphism family of G and F . The functor

∏
f yielding a homomorphism

from G to
∏
F is defined by

(Def. 14) for every element g of G and for every element i of I, f(i)(g) = it(g)(i).

Let us consider an element g of G. Now we state the propositions:

(45) for every element i of I, (
∏
f)(g)(i) = 1F (i) if and only if (

∏
f)(g) =

1∏F .

Proof: If for every element i of I, (
∏
f)(g)(i) = 1F (i), then (

∏
f)(g) =

1∏F . �

(46) g ∈ Ker
∏
f if and only if for every element i of I, g ∈ Ker f(i).

Proof: If g ∈ Ker
∏
f , then for every element i of I, g ∈ Ker f(i). If for

every element i of I, g ∈ Ker f(i), then g ∈ Ker
∏
f . �

(47) Let us consider groups G1, G2, G3, a homomorphism f1 from G1 to
G2, a homomorphism f2 from G2 to G3, and an element g of G1. Then
g ∈ Ker f2 · f1 if and only if f1(g) ∈ Ker f2.
Proof: If g ∈ Ker f2 · f1, then f1(g) ∈ Ker f2. If f1(g) ∈ Ker f2, then
g ∈ Ker f2 · f1. �

(48) Let us consider groups G1, G2, G3, a homomorphism f1 from G1 to G2,
and a homomorphism f2 from G2 to G3. Then the carrier of Ker f2 · f1 =
f1
−1((the carrier of Ker f2)).
Proof: For every element g of G1 such that g ∈ the carrier of Ker f2 · f1
holds g ∈ f1

−1((the carrier of Ker f2)). For every element g of G1 such
that g ∈ f1−1((the carrier of Ker f2)) holds g ∈ the carrier of Ker f2 · f1.
�

(49) The carrier of Ker
∏
f =

⋂
the set of all the carrier of Ker f(i) where

i is an element of I.
Proof: Set F = the set of all the carrier of Ker f(i) where i is an element
of I. F 6= ∅. For every object g, g ∈ Ker

∏
f iff for every set A such that

A ∈ F holds g ∈ A. For every object g, g ∈ Ker
∏
f iff g ∈

⋂
F . For every

object g, g ∈ the carrier of Ker
∏
f iff g ∈

⋂
F . �

(50) Let us consider a function f , a non empty set I, and a group family F

of I. Suppose dom f = I and for every element i of I, f(i) ∈ F (i). Then
f ∈
∏
F . The theorem is a consequence of (14).

(51) Let us consider a group family S of I, and an element g of
∏
F . Then

g ∈
∏
S if and only if for every element i of I, (proj(F, i))(g) ∈ S(i). The

theorem is a consequence of (50).

(52) Let us consider group families F1, F2 of I. Suppose for every element i
of I, F1(i) is a subgroup of F2(i). Then

∏
F1 is a subgroup of

∏
F2.
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Proof: Define A(element of I) = (incl(F1($1), F2($1))) · (proj(F1, $1)).
Consider f being a homomorphism family of

∏
F1 and F2 such that for

every element i of I, f(i) = A(i). For every element g of
∏
F1 and for

every element i of I, f(i)(g) = g(i). Consider ϕ being a homomorphism
from

∏
F1 to

∏
F2 such that for every element g of

∏
F1 and for every

element i of I, (f(i))(g) = (proj(F2, i))(ϕ(g)). For every element g of
∏
F1,

ϕ(g) = g. �

Let I be a non empty set, F be a group family of I, and S be a subgroup
family of F . The functor

∏
S yielding a strict subgroup of

∏
F is defined by the

term

(Def. 15)
∏
S.

Now we state the propositions:

(53) Im proj(F, i) = the multiplicative magma of F (i).
Proof: For every object g such that g ∈ the carrier of F (i) holds g ∈
the carrier of Im proj(F, i). �

(54) Let us consider componentwise strict subgroup families F1, F2 of F . Sup-
pose for every element i of I, Im proj(F1, i) is a subgroup of Im proj(F2, i).
Then

∏
F1 is a strict subgroup of

∏
F2. The theorem is a consequence of

(53) and (52).

(55) Let us consider a strict subgroup G of
∏
F , and S. Suppose for eve-

ry element i of I, S(i) = Im(proj(F, i)) · ( G↪→). Let us consider a ho-
momorphism family f of G and S. Suppose for every element i of I,
f(i) = (proj(F, i)) · ( G↪→). Then

∏
f = idα, where α is the carrier of G.

Proof: For every element g of G and for every element i of I, ((proj(F, i))·
( G↪→))(g) = ((proj(F, i)) · (

∏
f))(g). For every element g of

∏
F such that

g ∈ G holds (
∏
f)(g) = g. For every object x such that x ∈ the carrier of

G holds (
∏
f)(x) = x. �

(56) Let us consider groups G1, G2, a homomorphism ϕ from G1 to G2, and
an element x of G1. Suppose x ∈ the commutators of G1. Then ϕ(x) ∈
the commutators of G2.

(57) Let us consider groups G1, G2, G3, a homomorphism f1 from G1 to
G2, a homomorphism f2 from G2 to G3, and an element g of G1. Then
(f2 · f1)(g) = f2(f1(g)).

(58) Let us consider groups G1, G2, a subgroup H of G2, a homomorphism
f1 from G1 to G2, and a homomorphism f2 from G1 to H. If f1 = f2, then
Im f1 = Im f2.
Proof: For every element g of G2, g ∈ Im f1 iff g ∈ Im f2. �

(59) Let us consider elements a, b of
∏
F , and i. Then [a, b](i) = [a/i, b/i].
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The scheme SubFamEx deals with a non empty set I1 and a group family F
of I1 and a binary predicate P and states that

(Sch. 6) There exists a subgroup family S of F such that for every element i of
I1, P[i, S(i)]

provided

• for every element i of I1, there exists a subgroup j of F(i) such that P[i, j].

Now we state the propositions:

(60) Let us consider a many sorted set A indexed by I. Suppose for every
element i of I, A(i) is a subset of F (i). Then

∏
A is a subset of

∏
F .

Proof: For every object x such that x ∈
∏
A holds x ∈ the carrier of∏

F . �

(61) Let us consider a normal subgroup family S of F . Then
∏
S is a normal

subgroup of
∏
F .

Proof: For every element g of
∏
F , (
∏
S)g is a subgroup of

∏
S. �

Let I be a non empty set, F be a group family of I, and S be a normal
subgroup family of F . Note that

∏
S is normal as a subgroup of

∏
F .

9. Commutator Subgroup and Center of Product Groups

Now we state the proposition:

(62) Let us consider a group family Z of I. If for every element i of I, Z(i) =
Z(F (i)), then Z(

∏
F ) =

∏
Z.

Proof: For every element a of
∏
F , a ∈

∏
Z iff for every element b of∏

F , a · b = b · a. For every element a of
∏
F , a ∈

∏
Z iff a ∈ Z(

∏
F ). For

every element i of I, Z(i) is a subgroup of F (i). �

Let us consider a subgroup family D of F . Now we state the propositions:

(63) If for every element i of I, D(i) = F (i)c, then (
∏
F )c is a strict subgroup

of
∏
D.

Proof: For every elements a, b of
∏
F , [a, b] ∈

∏
D. �

(64) If for every element i of I, D(i) = F (i)c, then sumD is a strict subgroup
of (
∏
F )c.

Proof: For every element g of
∏
F such that g ∈ sumD holds g ∈ (

∏
F )c.

�

(65) Let us consider a finite, non empty set I, a group family F of I, and
a subgroup family D of F . Suppose for every element i of I, D(i) = F (i)c.
Then (

∏
F )c =

∏
D. The theorem is a consequence of (64) and (63).
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10. Quotients of Product Groups

Let I be a non empty set, F1, F2 be group families of I, and f be a homo-
morphism family of F1 and F2. The functor

∏
f yielding a homomorphism from∏

F1 to
∏
F2 is defined by

(Def. 16) for every element i of I, (proj(F2, i)) · it = f(i) · (proj(F1, i)).

The functor Ker f yielding a componentwise strict, normal subgroup family
of F1 is defined by

(Def. 17) for every element i of I, it(i) = Ker(f(i) qua homomorphism from F1(i)
to F2(i)).

The functor Im f yielding a componentwise strict subgroup family of F2 is
defined by

(Def. 18) for every element i of I, it(i) = Im(f(i) qua homomorphism from F1(i)
to F2(i)).

Let us consider group families F1, F2 of I and a homomorphism family f of
F1 and F2. Now we state the propositions:

(66) Ker
∏
f =
∏

Ker f .
Proof: For every element g of

∏
F1, g ∈ Ker

∏
f iff g ∈

∏
Ker f . �

(67) Im
∏
f =
∏

Im f .
Proof: For every element g of

∏
F2, g ∈ Im

∏
f iff g ∈

∏
Im f . �

(68) Let us consider a componentwise strict, normal subgroup family S of F .
Then

∏
F /∏S and

∏
(F /S) are isomorphic.

Proof: Define A(element of I) = the canonical homomorphism onto co-
sets of S($1). For every element i of I, A(i) is a homomorphism from F (i)
to (F /S)(i). Consider f being a homomorphism family of F and F /S such
that for every element i of I, f(i) = A(i). Ker f = S. Ker

∏
f =

∏
S.

Im f = F /S . Im
∏
f =
∏

Im f . �

11. Internal Direct Products

Let I be a set, G be a group, and I2 be a homomorphism family of I and
G. We say that I2 is normal if and only if

(Def. 19) for every object i such that i ∈ I holds I2(i) is a normal subgroup of G.

We say that I2 is componentwise strict if and only if

(Def. 20) for every object i such that i ∈ I holds I2(i) is a strict subgroup of G.

Let us consider a non empty set I, a group G, and a homomorphism family
F of I and G. Now we state the propositions:



Internal direct products and the universal property of ... 115

(69) F is normal if and only if for every element i of I, F (i) is a normal
subgroup of G.

(70) F is componentwise strict if and only if for every element i of I, F (i) is
a strict subgroup of G.

Let I be a set and G be a group. Note that there exists a homomorphism
family of I and G which is componentwise strict and normal.

Let I be a non empty set, F be a homomorphism family of I and G, and i

be an element of I. Note that the functor F (i) yields a subgroup of G. Let F be
a normal homomorphism family of I and G. One can check that F (i) is normal
as a subgroup of G. Now we state the propositions:

(71) Let us consider subgroups H1, H2 of G. Suppose [H1, H2] = {1}G. Let
us consider elements a, b of G. If a ∈ H1 and b ∈ H2, then a · b = b · a.

(72) Let us consider a normal subgroup N of G, and elements a, b of G. If
a ∈ N , then ab ∈ N .

(73) Let us consider normal subgroups H, K of G. Suppose H ∩K = {1}G.
Let us consider elements h, k of G. If h ∈ H and k ∈ K, then h · k = k ·h.
Proof: [h, k] ∈ H ∩K. �

(74) Let us consider a normal homomorphism family F of I and G, and
a subsetA ofG. SupposeA =

⋃
{the carrier of F (i), where i is an element

of I}. Then there exists a strict, normal subgroup N of G such that N =
gr(A).
Proof: ReconsiderN = gr(A) as a strict subgroup ofG. For every element
i of I, the carrier of F (i) ⊆ the carrier of N . For every element a of G,
Na is a subgroup of N . �

Let I be a set, J be a subset of I, and F be a group yielding many sorted set
indexed by I. One can verify that F �J is group yielding, J-defined, and total.

Now we state the proposition:

(75) Let us consider a set I, a homomorphism family F of I and G, and a set
J . If J ⊆ I, then F �J is a homomorphism family of J and G.
Proof: For every object j such that j ∈ J holds (F �J)(j) is a subgroup
of G. �

Let I be a set, G be a group, F be a homomorphism family of I and G,
and J be a subset of I. Note that the functor F �J yields a homomorphism
family of J and G. One can check that F �J is group yielding. Now we state the
propositions:

(76) Let us consider a normal homomorphism family F of I and G, a subset
A of G, and an element i of I. Suppose A =

⋃
{the carrier of F (j), where

j is an element of I : i 6= j}. Then there exists a strict, normal subgroup
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N of G such that N = gr(A). The theorem is a consequence of (75), (69),
and (74).

(77) Let us consider a non empty subset J of I, and a normal homomorphism
family F of I and G. Then F �J is a normal homomorphism family of J
and G.
Proof: For every element j of J , (F �J)(j) is a normal subgroup of G. �

(78) Let us consider a set I, a subset J of I, and a normal homomorphism
family F of I and G. Then F �J is a normal homomorphism family of J
and G.
Proof: For every object i such that i ∈ J holds (F �J)(i) is a normal
subgroup of G. �

Let I be a set, J be a subset of I, G be a group, and F be a normal homomor-
phism family of I and G. Let us note that F �J is normal as a homomorphism
family of J and G. Now we state the proposition:

(79) Let us consider a set I, a subset J of I, and a componentwise strict
homomorphism family F of I and G. Then F �J is a componentwise strict
homomorphism family of J and G.
Proof: For every object i such that i ∈ J holds (F �J)(i) is a strict
subgroup of G. �

Let I be a set, J be a subset of I, G be a group, and F be a componentwise
strict homomorphism family of I and G. Let us note that F �J is componentwise
strict as a homomorphism family of J and G. Now we state the propositions:

(80) Let us consider a set I, and a subset J of I. Suppose J is empty. Let us
consider a normal homomorphism family F of I and G. Then the support
of F �J = ∅ 7−→ 2α, where α is the carrier of G.

(81) Let us consider a set I, a subset J of I, a normal homomorphism family
F of I and G, and a subset A of G. Suppose A =

⋃
(the support of F �J).

Then there exists a strict, normal subgroup N of G such that N = gr(A).

(82) Let us consider a set I, a normal homomorphism family F of I and G,
and a subset A of G. Suppose A =

⋃
(the support of F ). Then there exists

a strict, normal subgroup N of G such that N = gr(A). The theorem is
a consequence of (81).

(83) Every componentwise strict homomorphism family of I and G is
(SubGrG)-valued. The theorem is a consequence of (5) and (70).

Let I be a non empty set and G be a group. Let us observe that every
componentwise strict homomorphism family of I and G is (SubGrG)-valued.
Let I be a set and F be a 1-sorted yielding many sorted set indexed by I.
An element of F is an element of the support of F . Now we state the proposition:
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(84) Let us consider a group family F of I, an element g of F , and an element
i of I. Then g(i) is an element of F (i). The theorem is a consequence of
(14).

Let I be a non empty set, G be a group, and F be a homomorphism family
of I and G. Observe that every element of F is (the carrier of G)-valued and
every element of

∏
F is I-defined, relation-like, and function-like and every

element of
∏
F is I-defined, (the carrier of G)-valued, and total. Now we state

the proposition:

(85) Let us consider a set I, a group G, and a homomorphism family F of I
and G. Then the support of F is (2α)-valued, where α is the carrier of G.
The theorem is a consequence of (14).

Let I be a set, G be a group, and F be a homomorphism family of I and
G. Observe that the support of F is (2(the carrier of G))-valued. Now we state the
propositions:

(86) Let us consider a group G, a finite subset S of SubGrG, and a natural
number n. Suppose n = S . Then CFS(S) is a homomorphism family of
Seg n and G.
Proof: For every object y such that y ∈ rng CFS(S) holds y is a subgroup
of G. CFS(S) is a group family of Seg n. For every object i such that
i ∈ Seg n holds (CFS(S))(i) is a subgroup of G. �

(87) Let us consider a group G, a finite subset N of the normal subgroups of
G, and a natural number n. Suppose n = N . Then CFS(N) is a normal
homomorphism family of Seg n and G.
Proof: For every object i such that i ∈ Seg n holds (CFS(N))(i) is a nor-
mal subgroup of G. �

(88) Let us consider a group G, an empty set I, and a homomorphism family
F of I and G. Then gr(

⋃
(the support of F )) = {1}G.

Let G be a group, I be a set, F be a homomorphism family of I and G,
and i be an object. Assume i ∈ I. The functor F/i yielding a subgroup of G is
defined by the term

(Def. 21) F (i).

We say that G is an internal product of F if and only if

(Def. 22) for every object i such that i ∈ I holds F (i) is a normal subgroup of
G and the multiplicative magma of G = gr(

⋃
(the support of F )) and for

every object i such that i ∈ I for every strict, normal subgroup N of G
such that N = gr(

⋃
(the support of F �I \ {j, where j is an element of

I : F (i) = F (j)})) holds F/i ∩N = {1}G.

Now we state the propositions:
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(89) Let us consider a group G, an empty set I, and a homomorphism family
F of I and G. Then G is an internal product of F if and only if G is trivial.
The theorem is a consequence of (88).

(90) Let us consider a group G, a non empty set I, and a homomorphism
family F of I and G. Then G is an internal product of F if and only if for
every element i of I, F (i) is a normal subgroup of G and the multiplicative
magma of G = gr(

⋃
(the support of F )) and for every element i of I and

for every subset J of I such that J = I \ {j, where j is an element of
I : F (i) = F (j)} for every strict, normal subgroup N of G such that
N = gr(

⋃
(the support of F �J)) holds F (i) ∩N = {1}G.

Let G be a group, I be a set, and F be a normal homomorphism family of
I and G. One can check that G is an internal product of F if and only if the
condition (Def. 23) is satisfied.

(Def. 23) the multiplicative magma of G = gr(
⋃

(the support of F )) and for every
object i such that i ∈ I for every strict, normal subgroup N of G such
that N = gr(

⋃
(the support of F �I\{j, where j is an element of I : F (i) =

F (j)})) holds F/i ∩N = {1}G.

Let us consider a group G, a non empty set I, and a normal homomorphism
family F of I and G. Now we state the propositions:

(91) G is an internal product of F if and only if the multiplicative magma of
G = gr(

⋃
(the support of F )) and for every element i of I and for every sub-

set J of I such that J = I \ {j, where j is an element of I : F (i) = F (j)}
for every strict, normal subgroup N of G such that N = gr(

⋃
(the support

of F �J)) holds F (i) ∩N = {1}G. The theorem is a consequence of (90).

(92) Suppose F is one-to-one. Then G is an internal product of F if and only
if the multiplicative magma of G = gr(

⋃
(the support of F )) and for every

element i of I and for every subset J of I such that J = I \ {i} for every
strict, normal subgroup N of G such that N = gr(

⋃
(the support of F �J))

holds F (i) ∩N = {1}G. The theorem is a consequence of (91).

(93) The celebrated “Recognition Theorem”, see Aschbacher [1,
(1.9)], Hungerford [5, (1.8.6)], Robinson [11, (1.4.7.ii)]:
Let us consider a strict group G, a non empty set I, and a normal homo-
morphism family F of I and G. Suppose F is one-to-one. Then G is an
internal product of F if and only if F is an internal direct sum components
of G and I.
Proof: For every element i of I and for every subset J of I, the support
of F �J = (the support of F )�J . If G is an internal product of F , then F

is an internal direct sum components of G and I. If F is an internal direct
sum components of G and I, then G is an internal product of F . �
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Let G be a group and F be a subset of SubGrG. We say that G is an internal
product of F if and only if

(Def. 24) for every strict subgroup H of G such that H ∈ F holds H is a nor-
mal subgroup of G and there exists a subset A of G such that A =⋃
{U3, where U3 is a subset of G : there exists a strict subgroup H of

G such that H ∈ F and U3 = the carrier of H} and the multiplicative
magma of G = gr(A) and for every strict subgroup H of G such that
H ∈ F for every subset A of G such that A =

⋃
{U4, where U4 is a subset

of G : there exists a strict subgroup K of G such that K ∈ F and U4 =
the carrier of K and K 6= H} holds H ∩ gr(A) = {1}G.

Let H be a strict subgroup of G. We say that H is an internal product of F
if and only if

(Def. 25) for every strict subgroup H1 of G such that H1 ∈ F holds H1 is a nor-
mal subgroup of H and there exists a subset A of G such that A =⋃
{U3, where U3 is a subset of G : there exists a strict subgroup H of

G such that H ∈ F and U3 = the carrier of H} and H = gr(A) and
for every strict subgroup H1 of G such that H1 ∈ F for every subset
A of G such that A =

⋃
{U4, where U4 is a subset of G : there exists

a strict subgroupK ofG such that K ∈ F and U4 = the carrier ofK and
K 6= H1} holds H1 ∩ gr(A) = {1}G.

Now we state the propositions:

(94) G is a subgroup of ΩG.

(95) Let us consider a groupG, and a subgroupH ofG. SupposeH is a normal
subgroup of ΩG. Then H is a normal subgroup of G. The theorem is
a consequence of (94).

(96) Let us consider a group G, and a subset F of SubGrG. Then G is an
internal product of F if and only if ΩG is an internal product of F . The
theorem is a consequence of (95).

(97) Let us consider a group G, a non empty set I, a componentwise strict
homomorphism family F of I and G, and a subset F of SubGrG. Sup-
pose F = rngF . Then

⋃
{A, where A is a subset of G : there exists

a strict subgroup H of G such that H ∈ F and A = the carrier of H} =⋃
(the support of F ). The theorem is a consequence of (5) and (14).

(98) Let us consider a group G, a non empty set I, a componentwise strict
homomorphism family F of I and G, and a subset F of SubGrG. Suppose
F = rngF . Let us consider a strict subgroup H of G, and an element
i of I. Suppose H = F (i). Let us consider a subset J of I. Suppose
J = I \ {j, where j is an element of I : F (i) = F (j)}. Then

⋃
{A, where

A is a subset of G : there exists a strict subgroup K of G such that K ∈
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F and A = the carrier of K and K 6= H} =
⋃

(the support of F �J).
Proof: Set X = {A, where A is a subset of G : there exists a strict sub-
group K of G such that K ∈ F and A = the carrier of K and K 6= H}.
For every object x, x ∈ X iff x ∈ rng(the support of F �J). �

(99) Let us consider a group G, a non empty set I, a componentwise strict
homomorphism family F of I and G, and a subset F of SubGrG. Suppose
F = rngF . Then G is an internal product of F if and only if G is an
internal product of F . The theorem is a consequence of (5), (97), (69),
(81), (98), and (70).

Acknowledgement: Dedicated in loving memory of Paul Sirri. “Each man
is a spark in the darkness. Would that we all burn as bright.”
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