REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/15404
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorOkazaki, Hiroyuki-
dc.date.accessioned2023-10-09T11:17:23Z-
dc.date.available2023-10-09T11:17:23Z-
dc.date.issued2023-
dc.identifier.citationFormalized Mathematics, Volume 31, Issue 1, Pages 53-57pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/15404-
dc.description.abstractIn this article, we formalize the Gram-Schmidt process in the Mizar system [2], [3] (compare another formalization using Isabelle/HOL proof assistant [1]). This process is one of the most famous methods for orthonormalizing a set of vectors. The method is named after Jørgen Pedersen Gram and Erhard Schmidt [4]. There are many applications of the Gram-Schmidt process in the field of computer science, e.g., error correcting codes or cryptology [8]. First, we prove some preliminary theorems about real unitary space. Next, we formalize the definition of the Gram-Schmidt process that finds orthonormal basis. We followed [5] in the formalization, continuing work developed in [7], [6].pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectGram-Schmidt processpl
dc.subjectorthonormal basispl
dc.subjectlinear algebrapl
dc.titleOn the Formalization of Gram-Schmidt Process for Orthonormalizing a Set of Vectorspl
dc.typeArticlepl
dc.rights.holder© 2023 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2023-0005-
dc.description.AffiliationShinshu University, Nagano, Japanpl
dc.description.referencesJesus Aransay and Jose Divasón. A formalisation in HOL of the fundamental theorem of linear algebra and its application to the solution of the least squares problem. Journal of Automated Reasoning, 58(4):509–535, 2017. doi:10.1007/s10817-016-9379-z.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesWard Cheney and David Kincaid. Linear Algebra: Theory and Applications. Jones and Bartlett publishers, 2009.pl
dc.description.referencesDavid G. Luenberger. Optimization by Vector Space Methods. John Wiley and Sons, 1969.pl
dc.description.referencesKazuhisa Nakasho, Hiroyuki Okazaki, and Yasunari Shidama. Real vector space and related notions. Formalized Mathematics, 29(3):117–127, 2021. doi:10.2478/forma-2021-0012.pl
dc.description.referencesHiroyuki Okazaki. Formalization of orthogonal decomposition for Hilbert spaces. Formalized Mathematics, 30(4):295–299, 2022. doi:10.2478/forma-2022-0023.pl
dc.description.referencesRene Thiemann and Akihisa Yamada. Formalizing Jordan Normal Forms in Isabelle/HOL. In Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pages 88–99, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450341271. doi:10.1145/2854065.2854073.pl
dc.identifier.eissn1898-9934-
dc.description.volume31pl
dc.description.issue1pl
dc.description.firstpage53pl
dc.description.lastpage57pl
dc.identifier.citation2Formalized Mathematicspl
Występuje w kolekcji(ach):Formalized Mathematics, 2023, Volume 31, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
10.2478_forma-2023-0005.pdf256,86 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons