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Summary. In this article, we formalize the Gram-Schmidt process in the
Mizar system [2], [3] (compare another formalization using Isabelle/HOL proof
assistant [1]). This process is one of the most famous methods for orthonorma-
lizing a set of vectors. The method is named after Jørgen Pedersen Gram and
Erhard Schmidt [4]. There are many applications of the Gram-Schmidt process in
the field of computer science, e.g., error correcting codes or cryptology [8]. First,
we prove some preliminary theorems about real unitary space. Next, we formali-
ze the definition of the Gram-Schmidt process that finds orthonormal basis. We
followed [5] in the formalization, continuing work developed in [7], [6].
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1. Preliminaries

Let V be a non empty RLS structure, r be a finite sequence of elements of
R, and x be a finite sequence of elements of V . The functor r◦x yielding a finite
sequence of elements of V is defined by

(Def. 1) len it = lenx and for every natural number i such that 1 ¬ i ¬ lenx
holds it(i) = r/i · (x/i).

Now we state the proposition:
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(1) Let us consider a real linear space V , a subset A of V , a finite sequence
x of elements of V , and a finite sequence r of elements of R. Suppose
rng x ⊆ A and lenx = len r. Then

∑
(r ◦ x) ∈ Lin(A).

Proof: Define P[natural number] ≡ for every finite sequence x of elements
of V for every finite sequence r of elements of R such that $1 = lenx and
rng x ⊆ A and lenx = len r holds

∑
(r ◦ x) ∈ Lin(A). P[0]. For every

natural number k such that P[k] holds P[k+1]. For every natural number
k, P[k]. �

Let us consider a real linear space V and subsets A, B of V . Now we state
the propositions:

(2) If A ⊆ the carrier of Lin(B), then Lin(A) is a subspace of Lin(B).

(3) Suppose A ⊆ the carrier of Lin(B) and B ⊆ the carrier of Lin(A). Then
Lin(A) = Lin(B). The theorem is a consequence of (2).

Let V be a non empty unitary space structure, u be a point of V , and x be
a finite sequence of elements of V . The functor (u|x) yielding a finite sequence
of elements of R is defined by

(Def. 2) len it = lenx and for every natural number i such that 1 ¬ i ¬ lenx
holds it(i) = (u|x/i).

Now we state the propositions:

(4) Let us consider a non empty unitary space structure V , a point u of V ,
a finite sequence x of elements of V , and a natural number i. Suppose
1 ¬ i ¬ lenx. Then ((u|x) ◦ x)(i) = (u|x/i) · (x/i).

(5) Let us consider a real unitary space V , a point u of V , and a finite
sequence x of elements of V . Then (u|

∑
x) =

∑
(u|x).

Proof: Define P[natural number] ≡ for every finite sequence x of elements
of V such that $1 = lenx holds (u|

∑
x) =

∑
(u|x). P[0]. For every natural

number k such that P[k] holds P[k+1]. For every natural number k, P[k].
�

(6) Let us consider a real unitary space V , a point u of V , a natural number
n, and a finite sequence x of elements of V . Suppose 1 ¬ n ¬ lenx and for
every natural number i such that 1 ¬ i ¬ lenx and n 6= i holds (u|x/i) = 0.
Then (u|

∑
x) = (u|x/n).

Proof: Define P[natural number] ≡ for every finite sequence x of elements
of V such that $1 = lenx and 1 ¬ n ¬ lenx and for every natural number
i such that 1 ¬ i ¬ lenx and n 6= i holds (u|x/i) = 0 holds (u|

∑
x) =

(u|x/n). For every natural number k such that P[k] holds P[k + 1]. For
every natural number k, P[k]. �

Let us consider a real unitary space H. Now we state the propositions:
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(7) There exists a function F from (the carrier of H) × (the carrier of H)∗

into (the carrier of H)∗ such that for every point x of H for every finite
sequence e of elements of H, there exists a finite sequence F2 of elements
of H such that F2 = F (x, e) and F2 = (x|e) ◦ e.
Proof: Set C = the carrier of H. Define R[object, object, object] ≡ there
exists a point x of H and there exists a finite sequence e of elements of
C such that $1 = x and $2 = e and there exists a finite sequence F2 of
elements of C such that F2 = $3 and F2 = (x|e) ◦ e. For every objects x, y
such that x ∈ C and y ∈ C∗ there exists an object z such that z ∈ C∗ and
R[x, y, z]. Consider F being a function from C ×C∗ into C∗ such that for
every objects z, y such that z ∈ C and y ∈ C∗ holds R[z, y, F (z, y)]. �

(8) Every orthonormal family of H is linearly independent.
Proof: For every linear combination l of G such that

∑
l = 0H holds

the support of l = ∅. �

2. Gram-Schmidt Process

Let H be a real unitary space. The functor SeqProj(H) yielding a function
from (the carrier of H)× (the carrier of H)∗ into (the carrier of H)∗ is defined
by

(Def. 3) for every point x of H and for every finite sequence e of elements of H,
there exists a finite sequence F2 of elements of H such that F2 = it(x, e)
and F2 = (x|e) ◦ e.

Now we state the proposition:

(9) Let us consider a real unitary spaceH, and a finite sequence x of elements
of H. Suppose x is one-to-one and rng x is linearly independent and 1 ¬
lenx. Then there exists a finite sequence e of elements of H such that

(i) lenx = len e, and

(ii) rng e is an orthonormal family of H, and

(iii) e is one-to-one, and

(iv) Lin(rng x) = Lin(rng e), and

(v) e/1 = 1
‖x/1‖

· (x/1), and

(vi) for every natural number k such that 1 ¬ k < lenx there exists a fi-
nite sequence g of elements of H such that g = (SeqProj(H))(〈〈x/1+k,
e�k〉〉) and e/k+1 = 1

‖x/1+k−
∑
g‖ · (x/1+k −

∑
g), and

(vii) for every natural number k such that k ¬ lenx holds rng(e�k) is an or-
thonormal family of H and e�k is one-to-one and Lin(rng(x�k)) =
Lin(rng(e�k)).
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Proof: Set C = the carrier of H. Reconsider F1 =
⋃
{Ci, where i is

a natural number : i ¬ lenx} as a non empty set. Set F = SeqProj(H).
Define R[object, object, object] ≡ there exists a C-valued finite sequence
e and there exists a natural number n such that e = $2 and n = $1 and
if len e < lenx, then there exists a C-valued finite sequence g such that
g = F (〈〈x/1+len e, e〉〉) and $3 = e a 〈 1

‖x/1+len e−
∑
g‖ · (x/1+len e −

∑
g)〉. For

every natural number n such that 1 ¬ n < lenx for every element e of F1,
there exists an element f of F1 such thatR[n, e, f ]. Set E0 = 〈 1‖x/1‖ ·(x/1)〉.

Consider E being a finite sequence of elements of F1 such that lenE =
lenx and E(1) = E0 or lenx = 0 and for every natural number n such
that 1 ¬ n < lenx holds R[n,E(n), E(n + 1)]. For every natural number
k such that k < lenx there exists a finite sequence e of elements of C
such that len e = k + 1 and E(k + 1) = e. For every natural number k
such that 1 ¬ k < lenx there exist finite sequences f , g of elements of C
such that E(k) = f and len f = k and g = F (〈〈x/1+k, f〉〉) and E(k + 1) =
fa〈 1

‖x/1+k−
∑
g‖ ·(x/1+k−

∑
g)〉. DefineQ[natural number, object, object] ≡

there exist finite sequences f , g of elements of C and there exists a point e1
of H such that E($1) = f and len f = $1 and e1 = $3 and g = F (〈〈x/1+$1 ,
f〉〉) and E($1 + 1) = f a 〈e1〉 and e1 = 1

‖x/1+$1−
∑
g‖ · (x/1+$1 −

∑
g). For

every natural number k such that 1 ¬ k < lenx for every element e of H,
there exists an element h of H such that Q[k, e, h]. Set e0 = 1

‖x/1‖
· (x/1).

Consider e being a finite sequence of elements of H such that len e =
lenx and e(1) = e0 or lenx = 0 and for every natural number n such
that 1 ¬ n < lenx holds Q[n, e(n), e(n + 1)]. For every natural number
n such that 1 ¬ n < lenx there exist finite sequences f , g of elements
of C such that E(n) = f and len f = n and g = F (〈〈x/1+n, f〉〉) and
E(n + 1) = f a 〈e/n+1〉 and e/n+1 = 1

‖x/1+n−
∑
g‖ · (x/1+n −

∑
g). For

every natural number n such that 1 ¬ n ¬ lenx holds E(n) = e�n. For
every natural number k such that 1 ¬ k < lenx there exists a finite
sequence g of elements of C such that g = F (〈〈x/1+k, e�k〉〉) and e/k+1 =

1
‖x/1+k−

∑
g‖ · (x/1+k −

∑
g). Define S[natural number] ≡ if $1 ¬ lenx,

then rng(e�$1) is an orthonormal family of H and e�$1 is one-to-one and
Lin(rng(x�$1)) = Lin(rng(e�$1)). S[0]. For every natural number k such
that S[k] holds S[k + 1]. For every natural number k, S[k]. �

Let H be a real unitary space and x be a finite sequence of elements of H.
Assume x is one-to-one and rng x is linearly independent and 1 ¬ lenx. The
functor PROCESSGramSchmidt(x) yielding a finite sequence of elements of H is
defined by
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(Def. 4) lenx = len it and rng it is an orthonormal family of H and it is one-
to-one and Lin(rng x) = Lin(rng it) and it/1 = 1

‖x/1‖
· (x/1) and for every

natural number k such that 1 ¬ k < lenx there exists a finite sequence g
of elements of H such that g = (SeqProj(H))(〈〈x/1+k, it�k〉〉) and it/k+1 =

1
‖x/1+k−

∑
g‖ · (x/1+k −

∑
g) and for every natural number k such that

k ¬ lenx holds rng(it�k) is an orthonormal family of H and it�k is one-
to-one and Lin(rng(x�k)) = Lin(rng(it�k)).

Now we state the proposition:

(10) Let us consider a real unitary space H, and a finite sequence x of ele-
ments of H. Suppose x is one-to-one and rng x is linearly independent and
1 ¬ lenx. Then rng PROCESSGramSchmidt(x) is linearly independent. The
theorem is a consequence of (8).
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