On the Formalization of Gram-Schmidt Process for Orthonormalizing a Set of Vectors

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Abstract

Summary. In this article, we formalize the Gram-Schmidt process in the Mizar system [2, 3] (compare another formalization using Isabelle/HOL proof assistant [1]). This process is one of the most famous methods for orthonormalizing a set of vectors. The method is named after Jørgen Pedersen Gram and Erhard Schmidt [4. There are many applications of the Gram-Schmidt process in the field of computer science, e.g., error correcting codes or cryptology [8]. First, we prove some preliminary theorems about real unitary space. Next, we formalize the definition of the Gram-Schmidt process that finds orthonormal basis. We followed [5] in the formalization, continuing work developed in [7, 6].

MSC: 65F25 94A11 97H60 68V20
Keywords: Gram-Schmidt process; orthonormal basis; linear algebra
MML identifier: RUSUB_6, version: 8.1.12 5.74.1441

1. Preliminaries

Let V be a non empty RLS structure, r be a finite sequence of elements of \mathbb{R}, and x be a finite sequence of elements of V. The functor $r \circ x$ yielding a finite sequence of elements of V is defined by
(Def. 1) len $i t=\operatorname{len} x$ and for every natural number i such that $1 \leqslant i \leqslant \operatorname{len} x$ holds $i t(i)=r_{/ i} \cdot\left(x_{/ i}\right)$.
Now we state the proposition:
(1) Let us consider a real linear space V, a subset A of V, a finite sequence x of elements of V, and a finite sequence r of elements of \mathbb{R}. Suppose $\operatorname{rng} x \subseteq A$ and len $x=\operatorname{len} r$. Then $\sum(r \circ x) \in \operatorname{Lin}(A)$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence x of elements of V for every finite sequence r of elements of \mathbb{R} such that $\$_{1}=\operatorname{len} x$ and $\operatorname{rng} x \subseteq A$ and len $x=\operatorname{len} r$ holds $\sum(r \circ x) \in \operatorname{Lin}(A) . \mathcal{P}[0]$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$.
Let us consider a real linear space V and subsets A, B of V. Now we state the propositions:
(2) If $A \subseteq$ the carrier of $\operatorname{Lin}(B)$, then $\operatorname{Lin}(A)$ is a subspace of $\operatorname{Lin}(B)$.
(3) Suppose $A \subseteq$ the carrier of $\operatorname{Lin}(B)$ and $B \subseteq$ the carrier of $\operatorname{Lin}(A)$. Then $\operatorname{Lin}(A)=\operatorname{Lin}(B)$. The theorem is a consequence of (2).
Let V be a non empty unitary space structure, u be a point of V, and x be a finite sequence of elements of V. The functor $(u \mid x)$ yielding a finite sequence of elements of \mathbb{R} is defined by
(Def. 2) len $i t=\operatorname{len} x$ and for every natural number i such that $1 \leqslant i \leqslant \operatorname{len} x$ holds $i t(i)=\left(u \mid x_{/ i}\right)$.
Now we state the propositions:
(4) Let us consider a non empty unitary space structure V, a point u of V, a finite sequence x of elements of V, and a natural number i. Suppose $1 \leqslant i \leqslant$ len x. Then $((u \mid x) \circ x)(i)=\left(u \mid x_{/ i}\right) \cdot\left(x_{/ i}\right)$.
(5) Let us consider a real unitary space V, a point u of V, and a finite sequence x of elements of V. Then $\left(u \mid \sum x\right)=\sum(u \mid x)$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence x of elements of V such that $\$_{1}=\operatorname{len} x$ holds $\left(u \mid \sum x\right)=\sum(u \mid x) . \mathcal{P}[0]$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$.
(6) Let us consider a real unitary space V, a point u of V, a natural number n, and a finite sequence x of elements of V. Suppose $1 \leqslant n \leqslant \operatorname{len} x$ and for every natural number i such that $1 \leqslant i \leqslant \operatorname{len} x$ and $n \neq i$ holds $\left(u \mid x_{/ i}\right)=0$. Then $\left(u \mid \sum x\right)=\left(u \mid x_{/ n}\right)$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence x of elements of V such that $\$_{1}=\operatorname{len} x$ and $1 \leqslant n \leqslant \operatorname{len} x$ and for every natural number i such that $1 \leqslant i \leqslant \operatorname{len} x$ and $n \neq i$ holds $\left(u \mid x_{/ i}\right)=0$ holds $\left(u \mid \sum x\right)=$ $\left(u \mid x_{/ n}\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$.
Let us consider a real unitary space H. Now we state the propositions:
(7) There exists a function F from (the carrier of $H) \times(\text { the carrier of } H)^{*}$ into (the carrier of $H)^{*}$ such that for every point x of H for every finite sequence e of elements of H, there exists a finite sequence F_{2} of elements of H such that $F_{2}=F(x, e)$ and $F_{2}=(x \mid e) \circ e$.
Proof: Set $C=$ the carrier of H. Define \mathcal{R} [object, object, object] \equiv there exists a point x of H and there exists a finite sequence e of elements of C such that $\$_{1}=x$ and $\$_{2}=e$ and there exists a finite sequence F_{2} of elements of C such that $F_{2}=\$_{3}$ and $F_{2}=(x \mid e) \circ e$. For every objects x, y such that $x \in C$ and $y \in C^{*}$ there exists an object z such that $z \in C^{*}$ and $\mathcal{R}[x, y, z]$. Consider F being a function from $C \times C^{*}$ into C^{*} such that for every objects z, y such that $z \in C$ and $y \in C^{*}$ holds $\mathcal{R}[z, y, F(z, y)]$.
(8) Every orthonormal family of H is linearly independent.

Proof: For every linear combination l of G such that $\sum l=0_{H}$ holds the support of $l=\emptyset$.

2. Gram-Schmidt Process

Let H be a real unitary space. The functor $\operatorname{Seq}_{\text {Proj }}(H)$ yielding a function from (the carrier of $H) \times(\text { the carrier of } H)^{*}$ into (the carrier of $\left.H\right)^{*}$ is defined by
(Def. 3) for every point x of H and for every finite sequence e of elements of H, there exists a finite sequence F_{2} of elements of H such that $F_{2}=i t(x, e)$ and $F_{2}=(x \mid e) \circ e$.

Now we state the proposition:
(9) Let us consider a real unitary space H, and a finite sequence x of elements of H. Suppose x is one-to-one and $\operatorname{rng} x$ is linearly independent and $1 \leqslant$ len x. Then there exists a finite sequence e of elements of H such that
(i) len $x=\operatorname{len} e$, and
(ii) $\operatorname{rng} e$ is an orthonormal family of H, and
(iii) e is one-to-one, and
(iv) $\operatorname{Lin}(\operatorname{rng} x)=\operatorname{Lin}(\operatorname{rng} e)$, and
(v) $e_{/ 1}=\frac{1}{\left\|x_{/ 1}\right\|} \cdot\left(x_{/ 1}\right)$, and
(vi) for every natural number k such that $1 \leqslant k<\operatorname{len} x$ there exists a finite sequence g of elements of H such that $g=\left(\operatorname{Seq}_{\text {Proj }}(H)\right)\left(\left\langle x_{/ 1+k}\right.\right.$, $e \upharpoonright k\rangle)$ and $e_{/ k+1}=\frac{1}{\left\|x_{/ 1+k}-\sum g\right\|} \cdot\left(x_{/ 1+k}-\sum g\right)$, and
(vii) for every natural number k such that $k \leqslant \operatorname{len} x$ holds $\operatorname{rng}(e \upharpoonright k)$ is an orthonormal family of H and $e \upharpoonright k$ is one-to-one and $\operatorname{Lin}(\operatorname{rng}(x \upharpoonright k))=$ $\operatorname{Lin}(\operatorname{rng}(e \upharpoonright k))$.

Proof: Set $C=$ the carrier of H. Reconsider $F_{1}=\bigcup\left\{C^{i}\right.$, where i is a natural number : $i \leqslant \operatorname{len} x\}$ as a non empty set. Set $F=\operatorname{Seq}_{\text {Proj }}(H)$. Define $\mathcal{R}[$ object, object, object] \equiv there exists a C-valued finite sequence e and there exists a natural number n such that $e=\$_{2}$ and $n=\$_{1}$ and if len $e<\operatorname{len} x$, then there exists a C-valued finite sequence g such that $g=F\left(\left\langle x_{/ 1+\mathrm{len} e}, e\right\rangle\right)$ and $\$_{3}=e^{乞}\left\langle\frac{1}{\left\|x / 1+\operatorname{len} e-\sum g\right\|} \cdot\left(x_{/ 1+\mathrm{len} e}-\sum g\right)\right\rangle$. For every natural number n such that $1 \leqslant n<\operatorname{len} x$ for every element e of F_{1}, there exists an element f of F_{1} such that $\mathcal{R}[n, e, f]$. Set $E_{0}=\left\langle\frac{1}{\|x / 1\|} \cdot\left(x_{/ 1}\right)\right\rangle$.

Consider E being a finite sequence of elements of F_{1} such that len $E=$ len x and $E(1)=E_{0}$ or len $x=0$ and for every natural number n such that $1 \leqslant n<\operatorname{len} x$ holds $\mathcal{R}[n, E(n), E(n+1)]$. For every natural number k such that $k<\operatorname{len} x$ there exists a finite sequence e of elements of C such that len $e=k+1$ and $E(k+1)=e$. For every natural number k such that $1 \leqslant k<\operatorname{len} x$ there exist finite sequences f, g of elements of C such that $E(k)=f$ and len $f=k$ and $g=F\left(\left\langle x_{/ 1+k}, f\right\rangle\right)$ and $E(k+1)=$ $f^{\wedge}\left\langle\frac{1}{\left\|x_{/ 1+k}-\sum g\right\|} \cdot\left(x_{/ 1+k}-\sum g\right)\right\rangle$. Define $\mathcal{Q}[$ natural number, object, object] \equiv there exist finite sequences f, g of elements of C and there exists a point e_{1} of H such that $E\left(\$_{1}\right)=f$ and len $f=\$_{1}$ and $e_{1}=\$_{3}$ and $g=F\left(\left\langle x_{/ 1+\$_{1}}\right.\right.$, $f\rangle$) and $E\left(\$_{1}+1\right)=f^{\wedge}\left\langle e_{1}\right\rangle$ and $e_{1}=\frac{1}{\left\|x / 1+\$_{1}-\sum g\right\|} \cdot\left(x_{/ 1+\$_{1}}-\sum g\right)$. For every natural number k such that $1 \leqslant k<\operatorname{len} x$ for every element e of H, there exists an element h of H such that $\mathcal{Q}[k, e, h]$. Set $e_{0}=\frac{1}{\|x / 1\|} \cdot\left(x_{/ 1}\right)$.

Consider e being a finite sequence of elements of H such that len $e=$ len x and $e(1)=e_{0}$ or len $x=0$ and for every natural number n such that $1 \leqslant n<\operatorname{len} x$ holds $\mathcal{Q}[n, e(n), e(n+1)]$. For every natural number n such that $1 \leqslant n<\operatorname{len} x$ there exist finite sequences f, g of elements of C such that $E(n)=f$ and $\operatorname{len} f=n$ and $g=F\left(\left\langle x_{/ 1+n}, f\right\rangle\right)$ and $E(n+1)=f \wedge\left\langle e_{/ n+1}\right\rangle$ and $e_{/ n+1}=\frac{1}{\left\|x / 1+n-\sum g\right\|} \cdot\left(x_{/ 1+n}-\sum g\right)$. For every natural number n such that $1 \leqslant n \leqslant \operatorname{len} x$ holds $E(n)=e\lceil n$. For every natural number k such that $1 \leqslant k<\operatorname{len} x$ there exists a finite sequence g of elements of C such that $g=F\left(\left\langle x_{/ 1+k}, e\lceil k\rangle\right)\right.$ and $e_{/ k+1}=$ $\frac{1}{\left\|x / 1+k-\sum g\right\|} \cdot\left(x_{/ 1+k}-\sum g\right)$. Define \mathcal{S} [natural number] \equiv if $\$_{1} \leqslant \operatorname{len} x$, then $\operatorname{rng}\left(e \mid \$_{1}\right)$ is an orthonormal family of H and $e \backslash \$_{1}$ is one-to-one and $\operatorname{Lin}\left(\operatorname{rng}\left(x \mid \$_{1}\right)\right)=\operatorname{Lin}\left(\operatorname{rng}\left(e \mid \$_{1}\right)\right) . \mathcal{S}[0]$. For every natural number k such that $\mathcal{S}[k]$ holds $\mathcal{S}[k+1]$. For every natural number $k, \mathcal{S}[k]$.
Let H be a real unitary space and x be a finite sequence of elements of H. Assume x is one-to-one and $\operatorname{rng} x$ is linearly independent and $1 \leqslant \operatorname{len} x$. The functor $\operatorname{PROCESS}_{\text {GramSchmidt }}(x)$ yielding a finite sequence of elements of H is defined by
(Def. 4) len $x=$ len $i t$ and rng it is an orthonormal family of H and it is one-to-one and $\operatorname{Lin}(\operatorname{rng} x)=\operatorname{Lin}(\operatorname{rng} i t)$ and $i t_{/ 1}=\frac{1}{\left\|x_{/ 1}\right\|} \cdot\left(x_{/ 1}\right)$ and for every natural number k such that $1 \leqslant k<$ len x there exists a finite sequence g of elements of H such that $g=\left(\operatorname{Seq}_{\text {Proj }}(H)\right)\left(\left\langle x_{/ 1+k}, i t \upharpoonright k\right\rangle\right)$ and $i t / k+1=$ $\frac{1}{\left\|x_{/ 1+k}-\sum g\right\|} \cdot\left(x_{/ 1+k}-\sum g\right)$ and for every natural number k such that $k \leqslant \operatorname{len} x$ holds $\operatorname{rng}(i t\lceil k)$ is an orthonormal family of H and $i t \upharpoonright k$ is one-to-one and $\operatorname{Lin}(\operatorname{rng}(x \upharpoonright k))=\operatorname{Lin}(\operatorname{rng}(i t \upharpoonright k))$.
Now we state the proposition:
(10) Let us consider a real unitary space H, and a finite sequence x of elements of H. Suppose x is one-to-one and $\operatorname{rng} x$ is linearly independent and $1 \leqslant \operatorname{len} x$. Then rng $\operatorname{PROCESS}_{\text {GramSchmidt }}(x)$ is linearly independent. The theorem is a consequence of (8).

Acknowledgement: The author would like to express his gratitude to Prof. Yasunari Shidama for his support and encouragement.

References

[1] Jesús Aransay and Jose Divasón. A formalisation in HOL of the fundamental theorem of linear algebra and its application to the solution of the least squares problem. Journal of Automated Reasoning, 58(4):509-535, 2017. doi 10.1007/s10817-016-9379-z
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[4] Ward Cheney and David Kincaid. Linear Algebra: Theory and Applications. Jones and Bartlett publishers, 2009.
[5] David G. Luenberger. Optimization by Vector Space Methods. John Wiley and Sons, 1969.
[6] Kazuhisa Nakasho, Hiroyuki Okazaki, and Yasunari Shidama. Real vector space and related notions. Formalized Mathematics, 29(3):117-127, 2021. doi 10.2478/forma-2021-0012.
[7] Hiroyuki Okazaki. Formalization of orthogonal decomposition for Hilbert spaces. Formalized Mathematics, 30(4):295-299, 2022. doi 10.2478/forma-2022-0023
[8] René Thiemann and Akihisa Yamada. Formalizing Jordan Normal Forms in Isabelle/HOL. In Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pages 88-99, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450341271 . doi $10.1145 / 2854065.2854073$

