REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/15401
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorEndou, Noboru-
dc.date.accessioned2023-10-09T10:08:33Z-
dc.date.available2023-10-09T10:08:33Z-
dc.date.issued2023-
dc.identifier.citationFormalized Mathematics, Volume 31, Issue 1, Pages 9-21pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/15401-
dc.description.abstractThis article generalizes the differential method on intervals, using the Mizar system [2], [3], [12]. Differentiation of real one-variable functions is introduced in Mizar [13], along standard lines (for interesting survey of formalizations of real analysis in various proof-assistants like ACL2 [11], Isabelle/HOL [10], Coq [4], see [5]), but the differentiable interval is restricted to open intervals. However, when considering the relationship with integration [9], since integration is an operation on a closed interval, it would be convenient for differentiation to be able to handle derivates on a closed interval as well. Regarding differentiability on a closed interval, the right and left differentiability have already been formalized [6], but they are the derivatives at the endpoints of an interval and not demonstrated as a differentiation over intervals. Therefore, in this paper, based on these results, although it is limited to real one-variable functions, we formalize the differentiation on arbitrary intervals and summarize them as various basic propositions. In particular, the chain rule [1] is an important formula in relation to differentiation and integration, extending recent formalized results [7], [8] in the latter field of research.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectdifferentiation on closed intervalpl
dc.subjectchain rulepl
dc.titleDifferentiation on Intervalpl
dc.typeArticlepl
dc.rights.holder© 2023 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2023-0002-
dc.description.AffiliationNational Institute of Technology, Gifu College, 2236-2 Kamimakuwa, Motosu, Gifu, Japanpl
dc.description.referencesTom M. Apostol. Mathematical Analysis. Addison-Wesley, 1969.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesSylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Improving real analysis in Coq: A user-friendly approach to integrals and derivatives. In Chris Hawblitzel and Dale Miller, editors, Certified Programs and Proofs – Second International Conference, CPP 2012, Kyoto, Japan, December 13–15, 2012. Proceedings, volume 7679 of Lecture Notes in Computer Science, pages 289–304. Springer, 2012. doi:10.1007/978-3-642-35308-6 22.pl
dc.description.referencesSylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Formalization of real analysis: A survey of proof assistants and libraries. Mathematical Structures in Computer Science, 26:1196–1233, 2015.pl
dc.description.referencesEwa Burakowska and Beata Madras. Real function one-side differentiability. Formalized Mathematics, 2(5):653–656, 1991.pl
dc.description.referencesNoboru Endou. Improper integral. Part I. Formalized Mathematics, 29(4):201–220, 2021. doi:10.2478/forma-2021-0019.pl
dc.description.referencesNoboru Endou. Improper integral. Part II. Formalized Mathematics, 29(4):279–294, 2021. doi:10.2478/forma-2021-0024.pl
dc.description.referencesNoboru Endou. Relationship between the Riemann and Lebesgue integrals. Formalized Mathematics, 29(4):185–199, 2021. doi:10.2478/forma-2021-0018.pl
dc.description.referencesJacques D. Fleuriot. On the mechanization of real analysis in Isabelle/HOL. In Mark Aagaard and John Harrison, editors, Theorem Proving in Higher Order Logics, pages 145–161. Springer Berlin Heidelberg, 2000. ISBN 978-3-540-44659-0.pl
dc.description.referencesRuben Gamboa. Continuity and Differentiability, pages 301–315. Springer US, 2000. ISBN 978-1-4757-3188-0. doi:10.1007/978-1-4757-3188-0_18pl
dc.description.referencesAdam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.pl
dc.description.referencesKonrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797–801, 1990.pl
dc.identifier.eissn1898-9934-
dc.description.volume31pl
dc.description.issue1pl
dc.description.firstpage9pl
dc.description.lastpage21pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0002-5922-2332-
Występuje w kolekcji(ach):Formalized Mathematics, 2023, Volume 31, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
10.2478_forma-2023-0002.pdf273,24 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons