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Summary. This article generalizes the differential method on intervals,
using the Mizar system [2], [3], [12]. Differentiation of real one-variable functions
is introduced in Mizar [13], along standard lines (for interesting survey of forma-
lizations of real analysis in various proof-assistants like ACL2 [11], Isabelle/HOL
[10], Coq [4], see [5]), but the differentiable interval is restricted to open intervals.
However, when considering the relationship with integration [9], since integration
is an operation on a closed interval, it would be convenient for differentiation to
be able to handle derivates on a closed interval as well. Regarding differentia-
bility on a closed interval, the right and left differentiability have already been
formalized [6], but they are the derivatives at the endpoints of an interval and
not demonstrated as a differentiation over intervals.

Therefore, in this paper, based on these results, although it is limited to real
one-variable functions, we formalize the differentiation on arbitrary intervals and
summarize them as various basic propositions. In particular, the chain rule [1]
is an important formula in relation to differentiation and integration, extending
recent formalized results [7], [8] in the latter field of research.
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1. Preliminaries

Now we state the propositions:

(1) Let us consider open subsets A, B of R, and partial functions f , g from
R to R. Suppose f is differentiable on A and rng(f�A) ⊆ B and g is
differentiable on B. Then
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(i) g · f is differentiable on A, and

(ii) (g · f)′�A = g′�B · f · f ′�A.

(2) Let us consider an interval I. Then

(i) ]inf I, sup I[ is an open subset of R, and

(ii) ]inf I, sup I[ ⊆ I.
(3) Let us consider an interval I, and a real number x. Suppose x ∈ I and
x 6= inf I and x 6= sup I. Then x ∈ ]inf I, sup I[.

Let us consider a partial function f from R to R, an interval I, and a real
number x. Now we state the propositions:

(4) If f is right differentiable in x and x ∈ I and x 6= sup I, then f�I is right
differentiable in x.
Proof: Consider r being a real number such that r > 0 and [x, x+ r] ⊆
dom f . For every 0-convergent, non-zero sequence h of real numbers and
for every constant sequence c of real numbers such that rng c = {x} and
rng(h + c) ⊆ dom(f�I) and for every natural number n, h(n) > 0 holds
h−1 · ((f�I∗(h+ c))− (f�I∗c)) is convergent. �

(5) If f is left differentiable in x and x ∈ I and x 6= inf I, then f�I is left
differentiable in x.
Proof: Consider r being a real number such that r > 0 and [x − r, x] ⊆
dom f . For every 0-convergent, non-zero sequence h of real numbers and
for every constant sequence c of real numbers such that rng c = {x} and
rng(h + c) ⊆ dom(f�I) and for every natural number n, h(n) < 0 holds
h−1 · ((f�I∗(h+ c))− (f�I∗c)) is convergent. �

(6) Let us consider a setX, and partial functions f1, f2 fromX to R. Suppose
dom f1 = dom f2. Then

(i) f1 + f2 − f2 = f1, and

(ii) f1 − f2 + f2 = f1.

2. Differentiation on Intervals

Let f be a partial function from R to R and I be a non empty interval. We
say that f is differentiable on interval I if and only if

(Def. 1) I ⊆ dom f and inf I < sup I and if inf I ∈ I, then f is right differentiable
in inf I and if sup I ∈ I, then f is left differentiable in sup I and f is
differentiable on ]inf I, sup I[.

Let I be an interval, non empty subset of R. Assume f is differentiable on
interval I. The functor f ′I yielding a partial function from R to R is defined by
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(Def. 2) dom it = I and for every real number x such that x ∈ I holds if x = inf I,
then it(x) = f ′+(x) and if x = sup I, then it(x) = f ′−(x) and if x 6= inf I
and x 6= sup I, then it(x) = f ′(x).

Let us consider a partial function f from R to R and real numbers a, b. Now
we state the propositions:

(7) If a < b and f is differentiable on interval [a, b], then f is differentiable
on ]a, b[.

(8) Suppose a ¬ b and f is differentiable on interval [a, b]. Then

(i) f ′[a,b](a) = f ′+(a), and

(ii) f ′[a,b](b) = f ′−(b), and

(iii) for every real number x such that x ∈ ]a, b[ holds f ′[a,b](x) = f ′(x).

Let us consider a partial function f from R to R, an interval I, and a real
number x. Now we state the propositions:

(9) If f�I is right differentiable in x, then f is right differentiable in x and
(f�I)′+(x) = f ′+(x).
Proof: Consider r being a real number such that r > 0 and [x, x+ r] ⊆
dom(f�I). For every 0-convergent, non-zero sequence h of real numbers
and for every constant sequence c of real numbers such that rng c = {x}
and rng(h + c) ⊆ dom f and for every natural number n, h(n) > 0 holds
h−1 ·((f∗(h+c))−(f∗c)) is convergent and lim(h−1 ·((f∗(h+c))−(f∗c))) =
(f�I)′+(x). �

(10) If f�I is left differentiable in x, then f is left differentiable in x and
(f�I)′−(x) = f ′−(x).
Proof: Consider r being a real number such that r > 0 and [x − r, x] ⊆
dom(f�I). For every 0-convergent, non-zero sequence h of real numbers
and for every constant sequence c of real numbers such that rng c = {x}
and rng(h + c) ⊆ dom f and for every natural number n, h(n) < 0 holds
h−1 ·((f∗(h+c))−(f∗c)) is convergent and lim(h−1 ·((f∗(h+c))−(f∗c))) =
(f�I)′−(x). �

Let us consider a partial function f from R to R and a non empty interval
I. Now we state the propositions:

(11) f is differentiable on interval I if and only if I ⊆ dom f and for every real
number x such that x ∈ I holds if x = inf I, then f�I is right differentiable
in x and if x = sup I, then f�I is left differentiable in x and if x ∈
]inf I, sup I[, then f is differentiable in x.
Proof: If inf I ∈ I, then f is right differentiable in inf I. If sup I ∈ I, then
f is left differentiable in sup I. ]inf I, sup I[ ⊆ I. For every real number x
such that x ∈ ]inf I, sup I[ holds f�]inf I, sup I[ is differentiable in x. �
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(12) If I is open interval, then f is differentiable on I iff f is differentiable on
interval I.

Let us consider a partial function f from R to R and real numbers x0, r.
Now we state the propositions:

(13) If f is right differentiable in x0 and rng f = {r}, then f ′+(x0) = 0.
Proof: For every non-zero, 0-convergent sequence h of real numbers and
for every constant sequence c of real numbers such that rng c = {x0}
and rng(h + c) ⊆ dom f and for every natural number n, h(n) > 0 holds
h−1 ·((f∗(h+c))−(f∗c)) is convergent and lim(h−1 ·((f∗(h+c))−(f∗c))) =
0. �

(14) If f is left differentiable in x0 and rng f = {r}, then f ′−(x0) = 0.
Proof: For every non-zero, 0-convergent sequence h of real numbers and
for every constant sequence c of real numbers such that rng c = {x0}
and rng(h + c) ⊆ dom f and for every natural number n, h(n) < 0 holds
h−1 ·((f∗(h+c))−(f∗c)) is convergent and lim(h−1 ·((f∗(h+c))−(f∗c))) =
0. �

(15) Let us consider a partial function f from R to R, and a non empty
interval I. Suppose I ⊆ dom f and inf I < sup I and there exists a real
number r such that rng f = {r}. Then

(i) f is differentiable on interval I, and

(ii) for every real number x such that x ∈ I holds f ′I(x) = 0.

Proof: Consider r being a real number such that rng f = {r}. Set
J = ]inf I, sup I[. For every real number x such that x ∈ J holds f�J
is differentiable in x. For every real number x such that x ∈ I holds
f ′I(x) = 0. �

Let us consider a partial function f from R to R and a real number x0. Now
we state the propositions:

(16) If dom f ⊆ ]−∞, x0[ and f is left continuous in x0, then f is continuous
in x0.

(17) If dom f ⊆ ]x0,+∞[ and f is right continuous in x0, then f is continuous
in x0.

3. Fundamental Properties

Now we state the proposition:

(18) Let us consider a partial function f from R to R, and a non empty
interval I. Suppose I ⊆ dom f and inf I < sup I and f�I = idI . Then

(i) f is differentiable on interval I, and
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(ii) for every real number x such that x ∈ I holds f ′I(x) = 1.

Proof: For every set x such that x ∈ I holds f(x) = x. Set J =
]inf I, sup I[. For every set x such that x ∈ J holds (f�J)(x) = x. For
every real number x such that x ∈ J holds f�J is differentiable in x. For
every real number x such that x ∈ I holds f ′I(x) = 1. �

Let us consider partial functions f , g from R to R and a non empty interval
I. Now we state the propositions:

(19) Suppose I ⊆ dom(f + g) and f is differentiable on interval I and g is
differentiable on interval I. Then

(i) f + g is differentiable on interval I, and

(ii) (f + g)′I = f ′I + g′I , and

(iii) for every real number x such that x ∈ I holds (f + g)′I(x) = f ′I(x) +
g′I(x).

Proof: Set J = ]inf I, sup I[. For every real number x such that x ∈ J
holds (f + g)�J is differentiable in x. For every element x of R such that
x ∈ dom(f + g)′I holds (f + g)′I(x) = (f ′I + g′I)(x). �

(20) Suppose I ⊆ dom(f − g) and f is differentiable on interval I and g is
differentiable on interval I. Then

(i) f − g is differentiable on interval I, and

(ii) (f − g)′I = f ′I − g′I , and

(iii) for every real number x such that x ∈ I holds (f − g)′I(x) = f ′I(x)−
g′I(x).

Proof: Reconsider J = ]inf I, sup I[ as an open subset of R. J ⊆ I. For
every real number x such that x ∈ J holds (f − g)�J is differentiable in x.
For every element x of R such that x ∈ dom(f − g)′I holds (f − g)′I(x) =
(f ′I − g′I)(x). �

Let us consider a partial function f from R to R and real numbers x0, r.
Now we state the propositions:

(21) If f is right differentiable in x0, then r ·f is right differentiable in x0 and
(r · f)′+(x0) = r · f ′+(x0).

(22) If f is left differentiable in x0, then r · f is left differentiable in x0 and
(r · f)′−(x0) = r · f ′−(x0).

(23) Let us consider a partial function f from R to R, a non empty interval
I, and a real number r. Suppose f is differentiable on interval I. Then

(i) r · f is differentiable on interval I, and

(ii) (r · f)′I = r · f ′I , and



14 noboru endou

(iii) for every real number x such that x ∈ I holds (r · f)′I(x) = r · f ′I(x).

Proof: For every real number x such that x ∈ ]inf I, sup I[ holds (r ·
f)�]inf I, sup I[ is differentiable in x. For every element x of R such that
x ∈ dom(r · f)′I holds (r · f)′I(x) = (r · f ′I)(x). �

Let us consider partial functions f , g from R to R and a non empty interval
I. Now we state the propositions:

(24) Suppose f is differentiable on interval I and g is differentiable on interval
I. Then

(i) f · g is differentiable on interval I, and

(ii) (f · g)′I = g · f ′I + f · g′I , and

(iii) for every real number x such that x ∈ I holds (f · g)′I(x) = g(x) ·
f ′I(x) + f(x) · g′I(x).

Proof: Reconsider J = ]inf I, sup I[ as an open subset of R. J ⊆ I.
For every element x of R such that x ∈ dom(f · g)′I holds (f · g)′I(x) =
(g · f ′I + f · g′I)(x). �

(25) Suppose I ⊆ dom(fg ) and f is differentiable on interval I and g is diffe-
rentiable on interval I. Then

(i) fg is differentiable on interval I, and

(ii) (fg )
′
I = f ′I ·g−g

′
I ·f

g2
, and

(iii) for every real number x such that x ∈ I holds (fg )
′
I(x) =

f ′I(x)·g(x)−g
′
I(x)·f(x)

g(x)2 .

Proof: Reconsider J = ]inf I, sup I[ as an open subset of R. J ⊆ I. For
every set x such that x ∈ I holds g(x) 6= 0. For every element x of R such

that x ∈ dom(fg )
′
I holds (fg )

′
I(x) = (f

′
I ·g−g

′
I ·f

g2
)(x). �

4. One-Sided Continuity

Now we state the proposition:

(26) Let us consider a partial function f from R to R, and a real number x0.
Suppose x0 ∈ dom f and f is continuous in x0. Then f is left continuous
in x0 and right continuous in x0.

Let us consider a real number x0 and a partial function f from R to R. Now
we state the propositions:
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(27) f is left continuous in x0 if and only if x0 ∈ dom f and for every real
number e such that 0 < e there exists a real number d such that 0 < d
and for every real number x such that x ∈ dom f and x0 − d < x < x0
holds |f(x)− f(x0)| < e.

(28) f is right continuous in x0 if and only if x0 ∈ dom f and for every real
number e such that 0 < e there exists a real number d such that 0 < d
and for every real number x such that x ∈ dom f and x0 < x < x0 + d
holds |f(x)− f(x0)| < e.

(29) Let us consider a partial function f from R to R, and a real number x0.
Suppose f is left continuous in x0 and right continuous in x0. Then f is
continuous in x0.
Proof: For every real number e such that 0 < e there exists a real number
d such that 0 < d and for every real number x such that x ∈ dom f and
|x− x0| < d holds |f(x)− f(x0)| < e. �

Let us consider a real number x0 and a partial function f from R to R. Now
we state the propositions:

(30) Suppose f is left continuous in x0 and for every real number r such that
r < x0 there exists a real number g such that r < g < x0 and g ∈ dom f .
Then

(i) f is left convergent in x0, and

(ii) limx0− f = f(x0).

(31) Suppose f is right continuous in x0 and for every real number r such
that x0 < r there exists a real number g such that g < r and x0 < g and
g ∈ dom f . Then

(i) f is right convergent in x0, and

(ii) limx0+ f = f(x0).

(32) Let us consider a partial function f from R to R, and a real number x0.
Suppose x0 ∈ dom f and f is right convergent in x0 and limx0+ f = f(x0).
Then f is right continuous in x0.

(33) Let us consider a real number x0, and a partial function f from R to R.
Suppose x0 ∈ dom f and f is left convergent in x0 and limx0− f = f(x0).
Then f is left continuous in x0.

(34) Let us consider a partial function f from R to R, and a real number x0.
Suppose f is convergent in x0 and limx0f = f(x0). Then f is continuous
in x0.
Proof: For every real number e such that 0 < e there exists a real number
d such that 0 < d and for every real number x such that x ∈ dom f and
|x− x0| < d holds |f(x)− f(x0)| < e. �
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From now on h denotes a non-zero, 0-convergent sequence of real numbers
and c denotes a constant sequence of real numbers.

Let us consider a partial function f from R to R and a real number x0. Now
we state the propositions:

(35) If f is right continuous in x0, then f�[x0,+∞[ is continuous in x0.
Proof: x0 ∈ dom f and for every real number e such that 0 < e there
exists a real number d such that 0 < d and for every real number x such
that x ∈ dom f and x0 < x < x0 + d holds |f(x) − f(x0)| < e. Set
f1 = f�[x0,+∞[. For every real number e such that 0 < e there exists
a real number d such that 0 < d and for every real number x such that
x ∈ dom f1 and |x− x0| < d holds |f1(x)− f1(x0)| < e. �

(36) If f is left continuous in x0, then f�]−∞, x0] is continuous in x0.
Proof: x0 ∈ dom f and for every real number e such that 0 < e there
exists a real number d such that 0 < d and for every real number x such
that x ∈ dom f and x0 − d < x < x0 holds |f(x) − f(x0)| < e. Set
f1 = f�]−∞, x0]. For every real number e such that 0 < e there exists
a real number d such that 0 < d and for every real number x such that
x ∈ dom f1 and |x− x0| < d holds |f1(x)− f1(x0)| < e. �

(37) Let us consider a partial function f from R to R, and a non empty
interval I. If f is differentiable on interval I, then f�I is continuous.
Proof: For every real number x such that x ∈ dom(f�I) holds f�I is
continuous in x. �

(38) Let us consider a partial function f from R to R, and non empty intervals
I, J . Suppose f is differentiable on interval I and J ⊆ I and inf J < sup J .
Then

(i) f is differentiable on interval J , and

(ii) for every real number x such that x ∈ J holds f ′I(x) = f ′J(x).

Proof: For every real number x such that x ∈ J holds if x = inf J ,
then f�J is right differentiable in x and if x = sup J , then f�J is left
differentiable in x and if x ∈ ]inf J, sup J [, then f is differentiable in x. For
every real number x such that x ∈ J holds f ′I(x) = f ′J(x). �

(39) Let us consider a partial function f from R to R, an open subset Z of
R, and a non empty interval I. Suppose I ⊆ Z and inf I < sup I and f is
differentiable on Z. Then f is differentiable on interval I.
Proof: For every real number x such that x ∈ I holds if x = inf I,
then f�I is right differentiable in x and if x = sup I, then f�I is left
differentiable in x and if x ∈ ]inf I, sup I[, then f is differentiable in x. �
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5. Chain Rule

From now on R, R1, R2 denote rests and L, L1, L2 denote linear functions.
Let us consider a real number x0 and partial functions f , g from R to R.

Now we state the propositions:

(40) Suppose f is right differentiable in x0 and g is differentiable in f(x0).
Then

(i) g · f is right differentiable in x0, and

(ii) (g · f)′+(x0) = g′(f(x0)) · f ′+(x0).

Proof: Consider r being a real number such that r > 0 and [x0, x0+ r] ⊆
dom(g · f). For every h and c such that rng c = {x0} and rng(h + c) ⊆
dom(g ·f) and for every natural number n, h(n) > 0 holds h−1 ·((g ·f∗(h+
c)) − (g · f∗c)) is convergent and lim(h−1 · ((g · f∗(h + c)) − (g · f∗c))) =
g′(f(x0)) · f ′+(x0). �

(41) Suppose f is left differentiable in x0 and g is differentiable in f(x0). Then

(i) g · f is left differentiable in x0, and

(ii) (g · f)′−(x0) = g′(f(x0)) · f ′−(x0).

Proof: Consider r being a real number such that r > 0 and [x0− r, x0] ⊆
dom(g · f). For every h and c such that rng c = {x0} and rng(h + c) ⊆
dom(g ·f) and for every natural number n, h(n) < 0 holds h−1 ·((g ·f∗(h+
c)) − (g · f∗c)) is convergent and lim(h−1 · ((g · f∗(h + c)) − (g · f∗c))) =
g′(f(x0)) · f ′−(x0). �

(42) Suppose f is right differentiable in x0 and g is right differentiable in
f(x0) and for every real number r1 such that r1 > 0 there exists a real
number r0 such that r0 > 0 and [x0, x0+ r0] ⊆ dom([f(x0), f(x0) + r1]�f).
Then

(i) g · f is right differentiable in x0, and

(ii) (g · f)′+(x0) = g′+(f(x0)) · f ′+(x0).

Proof: Consider r1 being a real number such that r1 > 0 and [f(x0), f(x0)
+r1] ⊆ dom g. Consider r0 being a real number such that r0 > 0 and
[x0, x0 + r0] ⊆ dom([f(x0), f(x0) + r1]�f). For every h and c such that
rng c = {x0} and rng(h + c) ⊆ dom(g · f) and for every natural number
n, h(n) > 0 holds h−1 · ((g · f∗(h + c)) − (g · f∗c)) is convergent and
lim(h−1 · ((g · f∗(h+ c))− (g · f∗c))) = g′+(f(x0)) · f ′+(x0). �

(43) Suppose f is left differentiable in x0 and g is right differentiable in f(x0)
and for every real number r1 such that r1 > 0 there exists a real number
r0 such that r0 > 0 and [x0 − r0, x0] ⊆ dom([f(x0), f(x0) + r1]�f). Then
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(i) g · f is left differentiable in x0, and

(ii) (g · f)′−(x0) = g′+(f(x0)) · f ′−(x0).

Proof: Consider r1 being a real number such that r1 > 0 and [f(x0), f(x0)
+r1] ⊆ dom g. Consider r0 being a real number such that r0 > 0 and
[x0 − r0, x0] ⊆ dom([f(x0), f(x0) + r1]�f). For every h and c such that
rng c = {x0} and rng(h + c) ⊆ dom(g · f) and for every natural number
n, h(n) < 0 holds h−1 · ((g · f∗(h + c)) − (g · f∗c)) is convergent and
lim(h−1 · ((g · f∗(h+ c))− (g · f∗c))) = g′+(f(x0)) · f ′−(x0). �

(44) Suppose f is differentiable in x0 and g is right differentiable in f(x0) and
for every real number r1 such that r1 > 0 there exists a real number r0
such that r0 > 0 and [x0− r0, x0+ r0] ⊆ dom([f(x0), f(x0) + r1]�f). Then

(i) g · f is differentiable in x0, and

(ii) (g · f)′(x0) = g′+(f(x0)) · f ′(x0).

The theorem is a consequence of (42) and (43).

(45) Suppose f is right differentiable in x0 and g is left differentiable in f(x0)
and for every real number r1 such that r1 > 0 there exists a real number
r0 such that r0 > 0 and [x0, x0 + r0] ⊆ dom([f(x0)− r1, f(x0)]�f). Then

(i) g · f is right differentiable in x0, and

(ii) (g · f)′+(x0) = g′−(f(x0)) · f ′+(x0).

Proof: Consider r1 being a real number such that r1 > 0 and [f(x0) −
r1, f(x0)] ⊆ dom g. Consider r0 being a real number such that r0 > 0 and
[x0, x0 + r0] ⊆ dom([f(x0) − r1, f(x0)]�f). For every h and c such that
rng c = {x0} and rng(h + c) ⊆ dom(g · f) and for every natural number
n, h(n) > 0 holds h−1 · ((g · f∗(h + c)) − (g · f∗c)) is convergent and
lim(h−1 · ((g · f∗(h+ c))− (g · f∗c))) = g′−(f(x0)) · f ′+(x0). �

(46) Suppose f is left differentiable in x0 and g is left differentiable in f(x0)
and for every real number r1 such that r1 > 0 there exists a real number
r0 such that r0 > 0 and [x0 − r0, x0] ⊆ dom([f(x0)− r1, f(x0)]�f). Then

(i) g · f is left differentiable in x0, and

(ii) (g · f)′−(x0) = g′−(f(x0)) · f ′−(x0).

Proof: Consider r1 being a real number such that r1 > 0 and [f(x0) −
r1, f(x0)] ⊆ dom g. Consider r0 being a real number such that r0 > 0 and
[x0 − r0, x0] ⊆ dom([f(x0) − r1, f(x0)]�f). For every h and c such that
rng c = {x0} and rng(h + c) ⊆ dom(g · f) and for every natural number
n, h(n) < 0 holds h−1 · ((g · f∗(h + c)) − (g · f∗c)) is convergent and
lim(h−1 · ((g · f∗(h+ c))− (g · f∗c))) = g′−(f(x0)) · f ′−(x0). �
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(47) Suppose f is differentiable in x0 and g is left differentiable in f(x0) and
for every real number r1 such that r1 > 0 there exists a real number r0
such that r0 > 0 and [x0− r0, x0+ r0] ⊆ dom([f(x0)− r1, f(x0)]�f). Then

(i) g · f is differentiable in x0, and

(ii) (g · f)′(x0) = g′−(f(x0)) · f ′(x0).
The theorem is a consequence of (45) and (46).

(48) Suppose f is right differentiable in x0 and g is right differentiable in
f(x0) and there exists a real number r such that r > 0 and f�[x0, x0 + r]
is non-decreasing. Then

(i) g · f is right differentiable in x0, and

(ii) (g · f)′+(x0) = g′+(f(x0)) · f ′+(x0).

Proof: Consider R being a real number such that R > 0 and f�[x0, x0+R]
is non-decreasing. x0 ∈ dom f . For every real number r1 such that r1 >
0 there exists a real number r0 such that r0 > 0 and [x0, x0 + r0] ⊆
dom([f(x0), f(x0) + r1]�f). �

(49) Suppose f is left differentiable in x0 and g is right differentiable in f(x0)
and there exists a real number r such that r > 0 and f�[x0 − r, x0] is
non-increasing. Then

(i) g · f is left differentiable in x0, and

(ii) (g · f)′−(x0) = g′+(f(x0)) · f ′−(x0).

Proof: Consider R being a real number such that R > 0 and f�[x0−R, x0]
is non-increasing. x0 ∈ dom f . For every real number r1 such that r1 >
0 there exists a real number r0 such that r0 > 0 and [x0 − r0, x0] ⊆
dom([f(x0), f(x0) + r1]�f). �

(50) Suppose f is right differentiable in x0 and g is left differentiable in f(x0)
and there exists a real number r such that r > 0 and f�[x0, x0 + r] is
non-increasing. Then

(i) g · f is right differentiable in x0, and

(ii) (g · f)′+(x0) = g′−(f(x0)) · f ′+(x0).

Proof: Consider R being a real number such that R > 0 and f�[x0, x0+R]
is non-increasing. x0 ∈ dom f . For every real number r1 such that r1 >
0 there exists a real number r0 such that r0 > 0 and [x0, x0 + r0] ⊆
dom([f(x0)− r1, f(x0)]�f). �

(51) Suppose f is left differentiable in x0 and g is left differentiable in f(x0)
and there exists a real number r such that r > 0 and f�[x0 − r, x0] is
non-decreasing. Then
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(i) g · f is left differentiable in x0, and

(ii) (g · f)′−(x0) = g′−(f(x0)) · f ′−(x0).

Proof: Consider R being a real number such that R > 0 and f�[x0−R, x0]
is non-decreasing. x0 ∈ dom f . For every real number r1 such that r1 >
0 there exists a real number r0 such that r0 > 0 and [x0 − r0, x0] ⊆
dom([f(x0)− r1, f(x0)]�f). �

(52) Chain rule:
Let us consider partial functions f , g from R to R, and non empty intervals
I, J . Suppose f is differentiable on interval I and g is differentiable on
interval J and f◦I ⊆ J . Then

(i) g · f is differentiable on interval I, and

(ii) (g · f)′I = g′J · f · f ′I .

The theorem is a consequence of (4), (5), (11), and (3).
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