

Differentiation on Interval

Noboru Endou^D National Institute of Technology, Gifu College 2236-2 Kamimakuwa, Motosu, Gifu, Japan

Summary. This article generalizes the differential method on intervals, using the Mizar system [2], [3], [12]. Differentiation of real one-variable functions is introduced in Mizar [13], along standard lines (for interesting survey of formalizations of real analysis in various proof-assistants like ACL2 [11], Isabelle/HOL [10], Coq [4], see [5]), but the differentiable interval is restricted to open intervals. However, when considering the relationship with integration [9], since integration is an operation on a closed interval, it would be convenient for differentiability on a closed interval, the right and left differentiability have already been formalized [6], but they are the derivatives at the endpoints of an interval and not demonstrated as a differentiation over intervals.

Therefore, in this paper, based on these results, although it is limited to real one-variable functions, we formalize the differentiation on arbitrary intervals and summarize them as various basic propositions. In particular, the chain rule [1] is an important formula in relation to differentiation and integration, extending recent formalized results [7], [8] in the latter field of research.

MSC: 26A06 68V20

Keywords: differentiation on closed interval; chain rule

 $\mathrm{MML} \ \mathrm{identifier:} \ \mathtt{FDIFF_12}, \ \mathrm{version:} \ \mathtt{8.1.12} \ \mathtt{5.74.1441}$

1. Preliminaries

Now we state the propositions:

(1) Let us consider open subsets A, B of \mathbb{R} , and partial functions f, g from \mathbb{R} to \mathbb{R} . Suppose f is differentiable on A and $\operatorname{rng}(f \upharpoonright A) \subseteq B$ and g is differentiable on B. Then

- (i) $g \cdot f$ is differentiable on A, and
- (ii) $(g \cdot f)'_{\uparrow A} = g'_{\uparrow B} \cdot f \cdot f'_{\uparrow A}.$
- (2) Let us consider an interval I. Then
 - (i) $\inf I$, $\sup I$ is an open subset of \mathbb{R} , and
 - (ii) $]\inf I, \sup I[\subseteq I.$
- (3) Let us consider an interval I, and a real number x. Suppose $x \in I$ and $x \neq \inf I$ and $x \neq \sup I$. Then $x \in \inf I$, $\sup I[$.

Let us consider a partial function f from \mathbb{R} to \mathbb{R} , an interval I, and a real number x. Now we state the propositions:

(4) If f is right differentiable in x and $x \in I$ and $x \neq \sup I$, then $f \upharpoonright I$ is right differentiable in x.

PROOF: Consider r being a real number such that r > 0 and $[x, x + r] \subseteq$ dom f. For every 0-convergent, non-zero sequence h of real numbers and for every constant sequence c of real numbers such that rng $c = \{x\}$ and rng $(h + c) \subseteq$ dom $(f \upharpoonright I)$ and for every natural number n, h(n) > 0 holds $h^{-1} \cdot ((f \upharpoonright I_*(h + c)) - (f \upharpoonright I_*c))$ is convergent. \Box

(5) If f is left differentiable in x and $x \in I$ and $x \neq \inf I$, then $f \upharpoonright I$ is left differentiable in x.

PROOF: Consider r being a real number such that r > 0 and $[x - r, x] \subseteq$ dom f. For every 0-convergent, non-zero sequence h of real numbers and for every constant sequence c of real numbers such that rng $c = \{x\}$ and rng $(h + c) \subseteq$ dom $(f \upharpoonright I)$ and for every natural number n, h(n) < 0 holds $h^{-1} \cdot ((f \upharpoonright I_*(h + c)) - (f \upharpoonright I_*c))$ is convergent. \Box

- (6) Let us consider a set X, and partial functions f_1 , f_2 from X to \mathbb{R} . Suppose dom $f_1 = \text{dom } f_2$. Then
 - (i) $f_1 + f_2 f_2 = f_1$, and
 - (ii) $f_1 f_2 + f_2 = f_1$.

2. Differentiation on Intervals

Let f be a partial function from \mathbb{R} to \mathbb{R} and I be a non empty interval. We say that f is differentiable on interval I if and only if

(Def. 1) $I \subseteq \text{dom } f$ and $\inf I < \sup I$ and $\inf \inf I \in I$, then f is right differentiable in $\inf I$ and $\inf \sup I \in I$, then f is left differentiable in $\sup I$ and f is differentiable on $\inf I$, $\sup I$ [.

Let I be an interval, non empty subset of \mathbb{R} . Assume f is differentiable on interval I. The functor f'_I yielding a partial function from \mathbb{R} to \mathbb{R} is defined by

(Def. 2) dom it = I and for every real number x such that $x \in I$ holds if $x = \inf I$, then $it(x) = f'_+(x)$ and if $x = \sup I$, then $it(x) = f'_-(x)$ and if $x \neq \inf I$ and $x \neq \sup I$, then it(x) = f'(x).

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:

- (7) If a < b and f is differentiable on interval [a, b], then f is differentiable on]a, b[.
- (8) Suppose $a \leq b$ and f is differentiable on interval [a, b]. Then

(i)
$$f'_{[a,b]}(a) = f'_+(a)$$
, and

- (ii) $f'_{[a,b]}(b) = f'_{-}(b)$, and
- (iii) for every real number x such that $x \in [a, b]$ holds $f'_{[a,b]}(x) = f'(x)$.

Let us consider a partial function f from \mathbb{R} to \mathbb{R} , an interval I, and a real number x. Now we state the propositions:

(9) If $f \upharpoonright I$ is right differentiable in x, then f is right differentiable in x and $(f \upharpoonright I)'_+(x) = f'_+(x)$.

PROOF: Consider r being a real number such that r > 0 and $[x, x + r] \subseteq \text{dom}(f \upharpoonright I)$. For every 0-convergent, non-zero sequence h of real numbers and for every constant sequence c of real numbers such that $\operatorname{rng} c = \{x\}$ and $\operatorname{rng}(h + c) \subseteq \text{dom } f$ and for every natural number n, h(n) > 0 holds $h^{-1} \cdot ((f_*(h+c)) - (f_*c))$ is convergent and $\lim(h^{-1} \cdot ((f_*(h+c)) - (f_*c))) = (f \upharpoonright I)'_+(x)$. \Box

(10) If $f \upharpoonright I$ is left differentiable in x, then f is left differentiable in x and $(f \upharpoonright I)'_{-}(x) = f'_{-}(x)$.

PROOF: Consider r being a real number such that r > 0 and $[x - r, x] \subseteq$ dom(f | I). For every 0-convergent, non-zero sequence h of real numbers and for every constant sequence c of real numbers such that rng $c = \{x\}$ and rng $(h + c) \subseteq$ dom f and for every natural number n, h(n) < 0 holds $h^{-1} \cdot ((f_*(h+c)) - (f_*c))$ is convergent and $\lim(h^{-1} \cdot ((f_*(h+c)) - (f_*c))) =$ $(f | I)'_{-}(x)$. \Box

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and a non empty interval I. Now we state the propositions:

(11) f is differentiable on interval I if and only if $I \subseteq \text{dom } f$ and for every real number x such that $x \in I$ holds if $x = \inf I$, then $f \upharpoonright I$ is right differentiable in x and if $x = \sup I$, then $f \upharpoonright I$ is left differentiable in x and if $x \in]\inf I$, sup I[, then f is differentiable in x.

PROOF: If $inf I \in I$, then f is right differentiable in I. If $\sup I \in I$, then f is left differentiable in $\sup I$. $[\inf I, \sup I] \subseteq I$. For every real number x such that $x \in [\inf I, \sup I]$ holds $f \upharpoonright [\inf I, \sup I]$ is differentiable in x. \Box

(12) If I is open interval, then f is differentiable on I iff f is differentiable on interval I.

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers x_0, r . Now we state the propositions:

- (13) If f is right differentiable in x_0 and rng $f = \{r\}$, then $f'_+(x_0) = 0$. PROOF: For every non-zero, 0-convergent sequence h of real numbers and for every constant sequence c of real numbers such that rng $c = \{x_0\}$ and rng $(h + c) \subseteq \text{dom } f$ and for every natural number n, h(n) > 0 holds $h^{-1} \cdot ((f_*(h+c)) - (f_*c))$ is convergent and $\lim(h^{-1} \cdot ((f_*(h+c)) - (f_*c))) =$
- (14) If f is left differentiable in x_0 and rng $f = \{r\}$, then $f'_-(x_0) = 0$. PROOF: For every non-zero, 0-convergent sequence h of real numbers and for every constant sequence c of real numbers such that rng $c = \{x_0\}$ and rng $(h + c) \subseteq \text{dom } f$ and for every natural number n, h(n) < 0 holds $h^{-1} \cdot ((f_*(h+c)) - (f_*c))$ is convergent and $\lim(h^{-1} \cdot ((f_*(h+c)) - (f_*c))) = 0$. \Box
- (15) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a non empty interval I. Suppose $I \subseteq \text{dom } f$ and $\inf I < \sup I$ and there exists a real number r such that $\operatorname{rng} f = \{r\}$. Then
 - (i) f is differentiable on interval I, and
 - (ii) for every real number x such that $x \in I$ holds $f'_I(x) = 0$.

PROOF: Consider r being a real number such that rng $f = \{r\}$. Set $J =]\inf I$, sup I[. For every real number x such that $x \in J$ holds $f \upharpoonright J$ is differentiable in x. For every real number x such that $x \in I$ holds $f'_I(x) = 0$. \Box

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and a real number x_0 . Now we state the propositions:

- (16) If dom $f \subseteq]-\infty, x_0[$ and f is left continuous in x_0 , then f is continuous in x_0 .
- (17) If dom $f \subseteq]x_0, +\infty[$ and f is right continuous in x_0 , then f is continuous in x_0 .

3. Fundamental Properties

Now we state the proposition:

- (18) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a non empty interval I. Suppose $I \subseteq \text{dom } f$ and $\inf I < \sup I$ and $f \upharpoonright I = \text{id}_I$. Then
 - (i) f is differentiable on interval I, and

0. 🗆

(ii) for every real number x such that $x \in I$ holds $f'_I(x) = 1$.

PROOF: For every set x such that $x \in I$ holds f(x) = x. Set $J =]\inf I$, $\sup I[$. For every set x such that $x \in J$ holds $(f \upharpoonright J)(x) = x$. For every real number x such that $x \in J$ holds $f \upharpoonright J$ is differentiable in x. For every real number x such that $x \in I$ holds $f'_I(x) = 1$. \Box

Let us consider partial functions f, g from \mathbb{R} to \mathbb{R} and a non empty interval I. Now we state the propositions:

- (19) Suppose $I \subseteq \text{dom}(f+g)$ and f is differentiable on interval I and g is differentiable on interval I. Then
 - (i) f + g is differentiable on interval I, and
 - (ii) $(f+g)'_I = f'_I + g'_I$, and
 - (iii) for every real number x such that $x \in I$ holds $(f + g)'_I(x) = f'_I(x) + g'_I(x)$.

PROOF: Set $J =]\inf I$, sup I[. For every real number x such that $x \in J$ holds $(f+g) \upharpoonright J$ is differentiable in x. For every element x of \mathbb{R} such that $x \in \operatorname{dom}(f+g)'_I$ holds $(f+g)'_I(x) = (f'_I + g'_I)(x)$. \Box

- (20) Suppose $I \subseteq \text{dom}(f g)$ and f is differentiable on interval I and g is differentiable on interval I. Then
 - (i) f g is differentiable on interval I, and
 - (ii) $(f g)'_I = f'_I g'_I$, and
 - (iii) for every real number x such that $x \in I$ holds $(f g)'_I(x) = f'_I(x) g'_I(x)$.

PROOF: Reconsider $J = [\inf I, \sup I[$ as an open subset of \mathbb{R} . $J \subseteq I$. For every real number x such that $x \in J$ holds $(f - g) \upharpoonright J$ is differentiable in x. For every element x of \mathbb{R} such that $x \in \operatorname{dom}(f - g)'_I$ holds $(f - g)'_I(x) = (f'_I - g'_I)(x)$. \Box

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers x_0, r . Now we state the propositions:

- (21) If f is right differentiable in x_0 , then $r \cdot f$ is right differentiable in x_0 and $(r \cdot f)'_+(x_0) = r \cdot f'_+(x_0)$.
- (22) If f is left differentiable in x_0 , then $r \cdot f$ is left differentiable in x_0 and $(r \cdot f)'_{-}(x_0) = r \cdot f'_{-}(x_0)$.
- (23) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , a non empty interval I, and a real number r. Suppose f is differentiable on interval I. Then
 - (i) $r \cdot f$ is differentiable on interval I, and
 - (ii) $(r \cdot f)'_I = r \cdot f'_I$, and

(iii) for every real number x such that $x \in I$ holds $(r \cdot f)'_I(x) = r \cdot f'_I(x)$.

PROOF: For every real number x such that $x \in [\inf I, \sup I[$ holds $(r \cdot f)|]$ inf I, sup I[is differentiable in x. For every element x of \mathbb{R} such that $x \in \operatorname{dom}(r \cdot f)'_I$ holds $(r \cdot f)'_I(x) = (r \cdot f'_I)(x)$. \Box

Let us consider partial functions f, g from \mathbb{R} to \mathbb{R} and a non empty interval I. Now we state the propositions:

- (24) Suppose f is differentiable on interval I and g is differentiable on interval I. Then
 - (i) $f \cdot g$ is differentiable on interval I, and
 - (ii) $(f \cdot g)'_I = g \cdot f'_I + f \cdot g'_I$, and
 - (iii) for every real number x such that $x \in I$ holds $(f \cdot g)'_I(x) = g(x) \cdot f'_I(x) + f(x) \cdot g'_I(x)$.

PROOF: Reconsider $J = [\inf I, \sup I[$ as an open subset of \mathbb{R} . $J \subseteq I$. For every element x of \mathbb{R} such that $x \in \operatorname{dom}(f \cdot g)'_I$ holds $(f \cdot g)'_I(x) = (g \cdot f'_I + f \cdot g'_I)(x)$. \Box

- (25) Suppose $I \subseteq \operatorname{dom}(\frac{f}{g})$ and f is differentiable on interval I and g is differentiable on interval I. Then
 - (i) $\frac{f}{g}$ is differentiable on interval *I*, and

(ii)
$$(\frac{f}{g})'_I = \frac{f'_I \cdot g - g'_I \cdot f}{g^2}$$
, and

(iii) for every real number x such that $x \in I$ holds $(\frac{f}{g})'_I(x) = \frac{f'_I(x) \cdot g(x) - g'_I(x) \cdot f(x)}{g(x)^2}$.

PROOF: Reconsider $J = [\inf I, \sup I[$ as an open subset of \mathbb{R} . $J \subseteq I$. For every set x such that $x \in I$ holds $g(x) \neq 0$. For every element x of \mathbb{R} such that $x \in \operatorname{dom}(\frac{f}{g})'_I$ holds $(\frac{f}{g})'_I(x) = (\frac{f'_I \cdot g - g'_I \cdot f}{g^2})(x)$. \Box

4. One-Sided Continuity

Now we state the proposition:

(26) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number x_0 . Suppose $x_0 \in \text{dom } f$ and f is continuous in x_0 . Then f is left continuous in x_0 and right continuous in x_0 .

Let us consider a real number x_0 and a partial function f from \mathbb{R} to \mathbb{R} . Now we state the propositions:

- (27) f is left continuous in x_0 if and only if $x_0 \in \text{dom } f$ and for every real number e such that 0 < e there exists a real number d such that 0 < d and for every real number x such that $x \in \text{dom } f$ and $x_0 d < x < x_0$ holds $|f(x) f(x_0)| < e$.
- (28) f is right continuous in x_0 if and only if $x_0 \in \text{dom } f$ and for every real number e such that 0 < e there exists a real number d such that 0 < dand for every real number x such that $x \in \text{dom } f$ and $x_0 < x < x_0 + d$ holds $|f(x) - f(x_0)| < e$.
- (29) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number x_0 . Suppose f is left continuous in x_0 and right continuous in x_0 . Then f is continuous in x_0 .

PROOF: For every real number e such that 0 < e there exists a real number d such that 0 < d and for every real number x such that $x \in \text{dom } f$ and $|x - x_0| < d$ holds $|f(x) - f(x_0)| < e$. \Box

Let us consider a real number x_0 and a partial function f from \mathbb{R} to \mathbb{R} . Now we state the propositions:

- (30) Suppose f is left continuous in x_0 and for every real number r such that $r < x_0$ there exists a real number g such that $r < g < x_0$ and $g \in \text{dom } f$. Then
 - (i) f is left convergent in x_0 , and
 - (ii) $\lim_{x_0^-} f = f(x_0)$.
- (31) Suppose f is right continuous in x_0 and for every real number r such that $x_0 < r$ there exists a real number g such that g < r and $x_0 < g$ and $g \in \text{dom } f$. Then
 - (i) f is right convergent in x_0 , and
 - (ii) $\lim_{x_0^+} f = f(x_0)$.
- (32) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number x_0 . Suppose $x_0 \in \text{dom } f$ and f is right convergent in x_0 and $\lim_{x_0^+} f = f(x_0)$. Then f is right continuous in x_0 .
- (33) Let us consider a real number x_0 , and a partial function f from \mathbb{R} to \mathbb{R} . Suppose $x_0 \in \text{dom } f$ and f is left convergent in x_0 and $\lim_{x_0^-} f = f(x_0)$. Then f is left continuous in x_0 .
- (34) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a real number x_0 . Suppose f is convergent in x_0 and $\lim_{x_0} f = f(x_0)$. Then f is continuous in x_0 .

PROOF: For every real number e such that 0 < e there exists a real number d such that 0 < d and for every real number x such that $x \in \text{dom } f$ and $|x - x_0| < d$ holds $|f(x) - f(x_0)| < e$. \Box

From now on h denotes a non-zero, 0-convergent sequence of real numbers and c denotes a constant sequence of real numbers.

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and a real number x_0 . Now we state the propositions:

- (35) If f is right continuous in x_0 , then $f \upharpoonright [x_0, +\infty]$ is continuous in x_0 .
 - PROOF: $x_0 \in \text{dom } f$ and for every real number e such that 0 < e there exists a real number d such that 0 < d and for every real number x such that $x \in \text{dom } f$ and $x_0 < x < x_0 + d$ holds $|f(x) f(x_0)| < e$. Set $f_1 = f \upharpoonright [x_0, +\infty[$. For every real number e such that 0 < e there exists a real number d such that 0 < d and for every real number x such that $x \in \text{dom } f_1$ and $|x x_0| < d$ holds $|f_1(x) f_1(x_0)| < e$. \Box
- (36) If f is left continuous in x_0 , then $f \upharpoonright] -\infty, x_0]$ is continuous in x_0 . PROOF: $x_0 \in \text{dom } f$ and for every real number e such that 0 < e there exists a real number d such that 0 < d and for every real number x such that $x \in \text{dom } f$ and $x_0 - d < x < x_0$ holds $|f(x) - f(x_0)| < e$. Set $f_1 = f \upharpoonright] -\infty, x_0]$. For every real number e such that 0 < e there exists a real number d such that 0 < d and for every real number x such that $x \in \text{dom } f_1$ and $|x - x_0| < d$ holds $|f_1(x) - f_1(x_0)| < e$. \Box
- (37) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and a non empty interval I. If f is differentiable on interval I, then $f \upharpoonright I$ is continuous. PROOF: For every real number x such that $x \in \text{dom}(f \upharpoonright I)$ holds $f \upharpoonright I$ is continuous in x. \Box
- (38) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , and non empty intervals I, J. Suppose f is differentiable on interval I and $J \subseteq I$ and $\inf J < \sup J$. Then
 - (i) f is differentiable on interval J, and
 - (ii) for every real number x such that $x \in J$ holds $f'_I(x) = f'_J(x)$.

PROOF: For every real number x such that $x \in J$ holds if $x = \inf J$, then $f \upharpoonright J$ is right differentiable in x and if $x = \sup J$, then $f \upharpoonright J$ is left differentiable in x and if $x \in [\inf J, \sup J[$, then f is differentiable in x. For every real number x such that $x \in J$ holds $f'_I(x) = f'_J(x)$. \Box

(39) Let us consider a partial function f from \mathbb{R} to \mathbb{R} , an open subset Z of \mathbb{R} , and a non empty interval I. Suppose $I \subseteq Z$ and $\inf I < \sup I$ and f is differentiable on Z. Then f is differentiable on interval I. PROOF: For every real number x such that $x \in I$ holds if $x = \inf I$,

then $f \upharpoonright I$ is right differentiable in x and if $x = \sup I$, then $f \upharpoonright I$ is left differentiable in x and if $x \in]\inf I$, sup I[, then f is differentiable in x. \Box

5. Chain Rule

From now on R, R_1 , R_2 denote rests and L, L_1 , L_2 denote linear functions. Let us consider a real number x_0 and partial functions f, g from \mathbb{R} to \mathbb{R} . Now we state the propositions:

- (40) Suppose f is right differentiable in x_0 and g is differentiable in $f(x_0)$. Then
 - (i) $g \cdot f$ is right differentiable in x_0 , and
 - (ii) $(g \cdot f)'_+(x_0) = g'(f(x_0)) \cdot f'_+(x_0).$

PROOF: Consider r being a real number such that r > 0 and $[x_0, x_0 + r] \subseteq$ dom $(g \cdot f)$. For every h and c such that rng $c = \{x_0\}$ and rng $(h + c) \subseteq$ dom $(g \cdot f)$ and for every natural number n, h(n) > 0 holds $h^{-1} \cdot ((g \cdot f_*(h + c)) - (g \cdot f_*c)))$ is convergent and $\lim(h^{-1} \cdot ((g \cdot f_*(h + c)) - (g \cdot f_*c))) =$ $g'(f(x_0)) \cdot f'_+(x_0)$. \Box

(41) Suppose f is left differentiable in x_0 and g is differentiable in $f(x_0)$. Then

- (i) $g \cdot f$ is left differentiable in x_0 , and
- (ii) $(g \cdot f)'_{-}(x_0) = g'(f(x_0)) \cdot f'_{-}(x_0).$

PROOF: Consider r being a real number such that r > 0 and $[x_0 - r, x_0] \subseteq$ dom $(g \cdot f)$. For every h and c such that rng $c = \{x_0\}$ and rng $(h + c) \subseteq$ dom $(g \cdot f)$ and for every natural number n, h(n) < 0 holds $h^{-1} \cdot ((g \cdot f_*(h + c)) - (g \cdot f_*c)))$ is convergent and $\lim(h^{-1} \cdot ((g \cdot f_*(h + c)) - (g \cdot f_*c))) = g'(f(x_0)) \cdot f'_-(x_0)$. \Box

- (42) Suppose f is right differentiable in x_0 and g is right differentiable in $f(x_0)$ and for every real number r_1 such that $r_1 > 0$ there exists a real number r_0 such that $r_0 > 0$ and $[x_0, x_0 + r_0] \subseteq \operatorname{dom}([f(x_0), f(x_0) + r_1]|f)$. Then
 - (i) $g \cdot f$ is right differentiable in x_0 , and
 - (ii) $(g \cdot f)'_+(x_0) = g'_+(f(x_0)) \cdot f'_+(x_0).$

PROOF: Consider r_1 being a real number such that $r_1 > 0$ and $[f(x_0), f(x_0) + r_1] \subseteq \text{dom } g$. Consider r_0 being a real number such that $r_0 > 0$ and $[x_0, x_0 + r_0] \subseteq \text{dom}([f(x_0), f(x_0) + r_1]]f)$. For every h and c such that $\operatorname{rng} c = \{x_0\}$ and $\operatorname{rng}(h + c) \subseteq \text{dom}(g \cdot f)$ and for every natural number n, h(n) > 0 holds $h^{-1} \cdot ((g \cdot f_*(h + c)) - (g \cdot f_*c))$ is convergent and $\lim(h^{-1} \cdot ((g \cdot f_*(h + c)) - (g \cdot f_*c))) = g'_+(f(x_0)) \cdot f'_+(x_0)$. \Box

(43) Suppose f is left differentiable in x_0 and g is right differentiable in $f(x_0)$ and for every real number r_1 such that $r_1 > 0$ there exists a real number r_0 such that $r_0 > 0$ and $[x_0 - r_0, x_0] \subseteq \operatorname{dom}([f(x_0), f(x_0) + r_1]]f)$. Then

- (i) $g \cdot f$ is left differentiable in x_0 , and
- (ii) $(g \cdot f)'_{-}(x_0) = g'_{+}(f(x_0)) \cdot f'_{-}(x_0).$

PROOF: Consider r_1 being a real number such that $r_1 > 0$ and $[f(x_0), f(x_0) + r_1] \subseteq \text{dom } g$. Consider r_0 being a real number such that $r_0 > 0$ and $[x_0 - r_0, x_0] \subseteq \text{dom}([f(x_0), f(x_0) + r_1]]f)$. For every h and c such that $\operatorname{rng} c = \{x_0\}$ and $\operatorname{rng}(h + c) \subseteq \text{dom}(g \cdot f)$ and for every natural number n, h(n) < 0 holds $h^{-1} \cdot ((g \cdot f_*(h + c)) - (g \cdot f_*c)))$ is convergent and $\lim(h^{-1} \cdot ((g \cdot f_*(h + c)) - (g \cdot f_*c))) = g'_+(f(x_0)) \cdot f'_-(x_0)$. \Box

- (44) Suppose f is differentiable in x_0 and g is right differentiable in $f(x_0)$ and for every real number r_1 such that $r_1 > 0$ there exists a real number r_0 such that $r_0 > 0$ and $[x_0 - r_0, x_0 + r_0] \subseteq \text{dom}([f(x_0), f(x_0) + r_1]|f)$. Then
 - (i) $g \cdot f$ is differentiable in x_0 , and
 - (ii) $(g \cdot f)'(x_0) = g'_+(f(x_0)) \cdot f'(x_0).$

The theorem is a consequence of (42) and (43).

- (45) Suppose f is right differentiable in x_0 and g is left differentiable in $f(x_0)$ and for every real number r_1 such that $r_1 > 0$ there exists a real number r_0 such that $r_0 > 0$ and $[x_0, x_0 + r_0] \subseteq \operatorname{dom}([f(x_0) - r_1, f(x_0)]]f)$. Then
 - (i) $g \cdot f$ is right differentiable in x_0 , and
 - (ii) $(g \cdot f)'_+(x_0) = g'_-(f(x_0)) \cdot f'_+(x_0).$

PROOF: Consider r_1 being a real number such that $r_1 > 0$ and $[f(x_0) - r_1, f(x_0)] \subseteq \text{dom } g$. Consider r_0 being a real number such that $r_0 > 0$ and $[x_0, x_0 + r_0] \subseteq \text{dom}([f(x_0) - r_1, f(x_0)]]f)$. For every h and c such that $\text{rng } c = \{x_0\}$ and $\text{rng}(h + c) \subseteq \text{dom}(g \cdot f)$ and for every natural number n, h(n) > 0 holds $h^{-1} \cdot ((g \cdot f_*(h + c)) - (g \cdot f_*c))$ is convergent and $\lim(h^{-1} \cdot ((g \cdot f_*(h + c)) - (g \cdot f_*c))) = g'_-(f(x_0)) \cdot f'_+(x_0)$. \Box

- (46) Suppose f is left differentiable in x_0 and g is left differentiable in $f(x_0)$ and for every real number r_1 such that $r_1 > 0$ there exists a real number r_0 such that $r_0 > 0$ and $[x_0 - r_0, x_0] \subseteq \operatorname{dom}([f(x_0) - r_1, f(x_0)]]f)$. Then
 - (i) $g \cdot f$ is left differentiable in x_0 , and
 - (ii) $(g \cdot f)'_{-}(x_0) = g'_{-}(f(x_0)) \cdot f'_{-}(x_0).$

PROOF: Consider r_1 being a real number such that $r_1 > 0$ and $[f(x_0) - r_1, f(x_0)] \subseteq \text{dom } g$. Consider r_0 being a real number such that $r_0 > 0$ and $[x_0 - r_0, x_0] \subseteq \text{dom}([f(x_0) - r_1, f(x_0)]1f)$. For every h and c such that $\text{rng } c = \{x_0\}$ and $\text{rng}(h + c) \subseteq \text{dom}(g \cdot f)$ and for every natural number n, h(n) < 0 holds $h^{-1} \cdot ((g \cdot f_*(h + c)) - (g \cdot f_*c))$ is convergent and $\lim(h^{-1} \cdot ((g \cdot f_*(h + c)) - (g \cdot f_*c))) = g'_-(f(x_0)) \cdot f'_-(x_0)$. \Box

- (47) Suppose f is differentiable in x_0 and g is left differentiable in $f(x_0)$ and for every real number r_1 such that $r_1 > 0$ there exists a real number r_0 such that $r_0 > 0$ and $[x_0 - r_0, x_0 + r_0] \subseteq \text{dom}([f(x_0) - r_1, f(x_0)]|f)$. Then
 - (i) $g \cdot f$ is differentiable in x_0 , and
 - (ii) $(g \cdot f)'(x_0) = g'_-(f(x_0)) \cdot f'(x_0).$

The theorem is a consequence of (45) and (46).

- (48) Suppose f is right differentiable in x_0 and g is right differentiable in $f(x_0)$ and there exists a real number r such that r > 0 and $f \upharpoonright [x_0, x_0 + r]$ is non-decreasing. Then
 - (i) $g \cdot f$ is right differentiable in x_0 , and
 - (ii) $(g \cdot f)'_+(x_0) = g'_+(f(x_0)) \cdot f'_+(x_0).$

PROOF: Consider R being a real number such that R > 0 and $f \upharpoonright [x_0, x_0 + R]$ is non-decreasing. $x_0 \in \text{dom } f$. For every real number r_1 such that $r_1 > 0$ there exists a real number r_0 such that $r_0 > 0$ and $[x_0, x_0 + r_0] \subseteq \text{dom}([f(x_0), f(x_0) + r_1] \uparrow f)$. \Box

- (49) Suppose f is left differentiable in x_0 and g is right differentiable in $f(x_0)$ and there exists a real number r such that r > 0 and $f \upharpoonright [x_0 r, x_0]$ is non-increasing. Then
 - (i) $g \cdot f$ is left differentiable in x_0 , and
 - (ii) $(g \cdot f)'_{-}(x_0) = g'_{+}(f(x_0)) \cdot f'_{-}(x_0).$

PROOF: Consider R being a real number such that R > 0 and $f \upharpoonright [x_0 - R, x_0]$ is non-increasing. $x_0 \in \text{dom } f$. For every real number r_1 such that $r_1 > 0$ there exists a real number r_0 such that $r_0 > 0$ and $[x_0 - r_0, x_0] \subseteq \text{dom}([f(x_0), f(x_0) + r_1] \uparrow f)$. \Box

- (50) Suppose f is right differentiable in x_0 and g is left differentiable in $f(x_0)$ and there exists a real number r such that r > 0 and $f \upharpoonright [x_0, x_0 + r]$ is non-increasing. Then
 - (i) $g \cdot f$ is right differentiable in x_0 , and
 - (ii) $(g \cdot f)'_+(x_0) = g'_-(f(x_0)) \cdot f'_+(x_0).$

PROOF: Consider R being a real number such that R > 0 and $f \upharpoonright [x_0, x_0 + R]$ is non-increasing. $x_0 \in \text{dom } f$. For every real number r_1 such that $r_1 > 0$ there exists a real number r_0 such that $r_0 > 0$ and $[x_0, x_0 + r_0] \subseteq \text{dom}([f(x_0) - r_1, f(x_0)] \uparrow f)$. \Box

(51) Suppose f is left differentiable in x_0 and g is left differentiable in $f(x_0)$ and there exists a real number r such that r > 0 and $f \upharpoonright [x_0 - r, x_0]$ is non-decreasing. Then

- (i) $g \cdot f$ is left differentiable in x_0 , and
- (ii) $(g \cdot f)'_{-}(x_0) = g'_{-}(f(x_0)) \cdot f'_{-}(x_0).$

PROOF: Consider R being a real number such that R > 0 and $f \upharpoonright [x_0 - R, x_0]$ is non-decreasing. $x_0 \in \text{dom } f$. For every real number r_1 such that $r_1 > 0$ there exists a real number r_0 such that $r_0 > 0$ and $[x_0 - r_0, x_0] \subseteq \text{dom}([f(x_0) - r_1, f(x_0)] \uparrow f)$. \Box

(52) Chain Rule:

Let us consider partial functions f, g from \mathbb{R} to \mathbb{R} , and non empty intervals I, J. Suppose f is differentiable on interval I and g is differentiable on interval J and $f^{\circ}I \subseteq J$. Then

- (i) $g \cdot f$ is differentiable on interval I, and
- (ii) $(g \cdot f)'_I = g'_J \cdot f \cdot f'_I$.

The theorem is a consequence of (4), (5), (11), and (3).

References

- [1] Tom M. Apostol. Mathematical Analysis. Addison-Wesley, 1969.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [4] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Improving real analysis in Coq: A user-friendly approach to integrals and derivatives. In Chris Hawblitzel and Dale Miller, editors, Certified Programs and Proofs – Second International Conference, CPP 2012, Kyoto, Japan, December 13–15, 2012. Proceedings, volume 7679 of Lecture Notes in Computer Science, pages 289–304. Springer, 2012. doi:10.1007/978-3-642-35308-6-22.
- [5] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Formalization of real analysis: A survey of proof assistants and libraries. *Mathematical Structures in Computer Science*, 26:1196–1233, 2015.
- [6] Ewa Burakowska and Beata Madras. Real function one-side differentiability. Formalized Mathematics, 2(5):653–656, 1991.
- [7] Noboru Endou. Improper integral. Part I. Formalized Mathematics, 29(4):201–220, 2021. doi:10.2478/forma-2021-0019.
- [8] Noboru Endou. Improper integral. Part II. Formalized Mathematics, 29(4):279–294, 2021. doi:10.2478/forma-2021-0024.
- [9] Noboru Endou. Relationship between the Riemann and Lebesgue integrals. Formalized Mathematics, 29(4):185–199, 2021. doi:10.2478/forma-2021-0018.
- [10] Jacques D. Fleuriot. On the mechanization of real analysis in Isabelle/HOL. In Mark Aagaard and John Harrison, editors, *Theorem Proving in Higher Order Logics*, pages 145–161. Springer Berlin Heidelberg, 2000. ISBN 978-3-540-44659-0.
- [11] Ruben Gamboa. Continuity and Differentiability, pages 301–315. Springer US, 2000. ISBN 978-1-4757-3188-0. doi:10.1007/978-1-4757-3188-0_18.

- [12] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.
- [13] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797–801, 1990.

Accepted March 31, 2023