Differentiation on Interval

Noboru Endou(
National Institute of Technology, Gifu College
2236-2 Kamimakuwa, Motosu, Gifu, Japan

Abstract

Summary. This article generalizes the differential method on intervals, using the Mizar system [2, [3, [12. Differentiation of real one-variable functions is introduced in Mizar [13], along standard lines (for interesting survey of formalizations of real analysis in various proof-assistants like ACL2 [11, Isabelle/HOL [10], Coq [4], see [5), but the differentiable interval is restricted to open intervals. However, when considering the relationship with integration [9, since integration is an operation on a closed interval, it would be convenient for differentiation to be able to handle derivates on a closed interval as well. Regarding differentiability on a closed interval, the right and left differentiability have already been formalized [6], but they are the derivatives at the endpoints of an interval and not demonstrated as a differentiation over intervals.

Therefore, in this paper, based on these results, although it is limited to real one-variable functions, we formalize the differentiation on arbitrary intervals and summarize them as various basic propositions. In particular, the chain rule [1] is an important formula in relation to differentiation and integration, extending recent formalized results [7, [8] in the latter field of research.

MSC: 26A06 68V20
Keywords: differentiation on closed interval; chain rule
MML identifier: FDIFF_12, version: 8.1.12 5.74.1441

1. Preliminaries

Now we state the propositions:
(1) Let us consider open subsets A, B of \mathbb{R}, and partial functions f, g from \mathbb{R} to \mathbb{R}. Suppose f is differentiable on A and $\operatorname{rng}(f \upharpoonright A) \subseteq B$ and g is differentiable on B. Then
(i) $g \cdot f$ is differentiable on A, and
(ii) $(g \cdot f)^{\prime}{ }_{A}=g_{\uparrow B}^{\prime} \cdot f \cdot f_{\lceil A}^{\prime}$.
(2) Let us consider an interval I. Then
(i) $] \inf I, \sup I[$ is an open subset of \mathbb{R}, and
(ii) $] \inf I, \sup I[\subseteq I$.
(3) Let us consider an interval I, and a real number x. Suppose $x \in I$ and $x \neq \inf I$ and $x \neq \sup I$. Then $x \in] \inf I$, sup $I[$.
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, an interval I, and a real number x. Now we state the propositions:
(4) If f is right differentiable in x and $x \in I$ and $x \neq \sup I$, then $f\lceil I$ is right differentiable in x.
Proof: Consider r being a real number such that $r>0$ and $[x, x+r] \subseteq$ dom f. For every 0 -convergent, non-zero sequence h of real numbers and for every constant sequence c of real numbers such that $\operatorname{rng} c=\{x\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom}(f\lceil I)$ and for every natural number $n, h(n)>0$ holds $h^{-1} \cdot\left(\left(f \upharpoonright I_{*}(h+c)\right)-\left(f \upharpoonright I_{*} c\right)\right)$ is convergent.
(5) If f is left differentiable in x and $x \in I$ and $x \neq \inf I$, then $f \upharpoonright I$ is left differentiable in x.
Proof: Consider r being a real number such that $r>0$ and $[x-r, x] \subseteq$ dom f. For every 0 -convergent, non-zero sequence h of real numbers and for every constant sequence c of real numbers such that $\operatorname{rng} c=\{x\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom}(f \upharpoonright I)$ and for every natural number $n, h(n)<0$ holds $h^{-1} \cdot\left(\left(f\left\lceil I_{*}(h+c)\right)-\left(f\left\lceil I_{*} c\right)\right)\right.\right.$ is convergent.
(6) Let us consider a set X, and partial functions f_{1}, f_{2} from X to \mathbb{R}. Suppose $\operatorname{dom} f_{1}=\operatorname{dom} f_{2}$. Then
(i) $f_{1}+f_{2}-f_{2}=f_{1}$, and
(ii) $f_{1}-f_{2}+f_{2}=f_{1}$.

2. Differentiation on Intervals

Let f be a partial function from \mathbb{R} to \mathbb{R} and I be a non empty interval. We say that f is differentiable on interval I if and only if
(Def. 1) $I \subseteq \operatorname{dom} f$ and $\inf I<\sup I$ and if inf $I \in I$, then f is right differentiable in $\inf I$ and if $\sup I \in I$, then f is left differentiable in $\sup I$ and f is differentiable on $] \inf I, \sup I[$.
Let I be an interval, non empty subset of \mathbb{R}. Assume f is differentiable on interval I. The functor f_{I}^{\prime} yielding a partial function from \mathbb{R} to \mathbb{R} is defined by
(Def. 2) dom $i t=I$ and for every real number x such that $x \in I$ holds if $x=\inf I$, then it $(x)=f_{+}^{\prime}(x)$ and if $x=\sup I$, then $i t(x)=f_{-}^{\prime}(x)$ and if $x \neq \inf I$ and $x \neq \sup I$, then $i t(x)=f^{\prime}(x)$.
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers a, b. Now we state the propositions:
(7) If $a<b$ and f is differentiable on interval $[a, b]$, then f is differentiable on $] a, b[$.
(8) Suppose $a \leqslant b$ and f is differentiable on interval $[a, b]$. Then
(i) $f_{[a, b]}^{\prime}(a)=f_{+}^{\prime}(a)$, and
(ii) $f_{[a, b]}^{\prime}(b)=f_{-}^{\prime}(b)$, and
(iii) for every real number x such that $x \in] a, b\left[\right.$ holds $f_{[a, b]}^{\prime}(x)=f^{\prime}(x)$.

Let us consider a partial function f from \mathbb{R} to \mathbb{R}, an interval I, and a real number x. Now we state the propositions:
(9) If $f \upharpoonright I$ is right differentiable in x, then f is right differentiable in x and $(f \upharpoonright I)_{+}^{\prime}(x)=f_{+}^{\prime}(x)$.
Proof: Consider r being a real number such that $r>0$ and $[x, x+r] \subseteq$ $\operatorname{dom}(f \upharpoonright I)$. For every 0-convergent, non-zero sequence h of real numbers and for every constant sequence c of real numbers such that $\operatorname{rng} c=\{x\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every natural number $n, h(n)>0$ holds $h^{-1} \cdot\left(\left(f_{*}(h+c)\right)-\left(f_{*} c\right)\right)$ is convergent and $\lim \left(h^{-1} \cdot\left(\left(f_{*}(h+c)\right)-\left(f_{*} c\right)\right)\right)=$ $(f \upharpoonright I)_{+}^{\prime}(x)$.
(10) If $f \upharpoonright I$ is left differentiable in x, then f is left differentiable in x and $(f \upharpoonright I)_{-}^{\prime}(x)=f_{-}^{\prime}(x)$.
Proof: Consider r being a real number such that $r>0$ and $[x-r, x] \subseteq$ $\operatorname{dom}(f \upharpoonright I)$. For every 0 -convergent, non-zero sequence h of real numbers and for every constant sequence c of real numbers such that $\operatorname{rng} c=\{x\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every natural number $n, h(n)<0$ holds $h^{-1} \cdot\left(\left(f_{*}(h+c)\right)-\left(f_{*} c\right)\right)$ is convergent and $\lim \left(h^{-1} \cdot\left(\left(f_{*}(h+c)\right)-\left(f_{*} c\right)\right)\right)=$ $\left(f\lceil I)_{-}^{\prime}(x)\right.$.
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and a non empty interval I. Now we state the propositions:
(11) f is differentiable on interval I if and only if $I \subseteq \operatorname{dom} f$ and for every real number x such that $x \in I$ holds if $x=\inf I$, then $f \upharpoonright I$ is right differentiable in x and if $x=\sup I$, then $f \upharpoonright I$ is left differentiable in x and if $x \in$]inf $I, \sup I[$, then f is differentiable in x.
Proof: If $\inf I \in I$, then f is right differentiable in $\inf I$. If $\sup I \in I$, then f is left differentiable in $\sup I$. $] \inf I, \sup I[\subseteq I$. For every real number x such that $x \in] \inf I, \sup I[$ holds $f \upharpoonright] \inf I, \sup I[$ is differentiable in x.
(12) If I is open interval, then f is differentiable on I iff f is differentiable on interval I.
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers x_{0}, r. Now we state the propositions:
(13) If f is right differentiable in x_{0} and $\operatorname{rng} f=\{r\}$, then $f_{+}^{\prime}\left(x_{0}\right)=0$.

Proof: For every non-zero, 0-convergent sequence h of real numbers and for every constant sequence c of real numbers such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every natural number $n, h(n)>0$ holds $h^{-1} \cdot\left(\left(f_{*}(h+c)\right)-\left(f_{*} c\right)\right)$ is convergent and $\lim \left(h^{-1} \cdot\left(\left(f_{*}(h+c)\right)-\left(f_{*} c\right)\right)\right)=$ 0.
(14) If f is left differentiable in x_{0} and $\operatorname{rng} f=\{r\}$, then $f_{-}^{\prime}\left(x_{0}\right)=0$.

Proof: For every non-zero, 0-convergent sequence h of real numbers and for every constant sequence c of real numbers such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom} f$ and for every natural number $n, h(n)<0$ holds $h^{-1} \cdot\left(\left(f_{*}(h+c)\right)-\left(f_{*} c\right)\right)$ is convergent and $\lim \left(h^{-1} \cdot\left(\left(f_{*}(h+c)\right)-\left(f_{*} c\right)\right)\right)=$ 0.
(15) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a non empty interval I. Suppose $I \subseteq \operatorname{dom} f$ and $\inf I<\sup I$ and there exists a real number r such that rng $f=\{r\}$. Then
(i) f is differentiable on interval I, and
(ii) for every real number x such that $x \in I$ holds $f_{I}^{\prime}(x)=0$.

Proof: Consider r being a real number such that $\operatorname{rng} f=\{r\}$. Set $J=] \inf I$, sup $I[$. For every real number x such that $x \in J$ holds $f \upharpoonright J$ is differentiable in x. For every real number x such that $x \in I$ holds $f_{I}^{\prime}(x)=0$.
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and a real number x_{0}. Now we state the propositions:
(16) If dom $f \subseteq]-\infty, x_{0}\left[\right.$ and f is left continuous in x_{0}, then f is continuous in x_{0}.
(17) If $\operatorname{dom} f \subseteq] x_{0},+\infty\left[\right.$ and f is right continuous in x_{0}, then f is continuous in x_{0}.

3. Fundamental Properties

Now we state the proposition:
(18) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a non empty interval I. Suppose $I \subseteq \operatorname{dom} f$ and $\inf I<\sup I$ and $f\left\lceil I=\mathrm{id}_{I}\right.$. Then
(i) f is differentiable on interval I, and
(ii) for every real number x such that $x \in I$ holds $f_{I}^{\prime}(x)=1$.

Proof: For every set x such that $x \in I$ holds $f(x)=x$. Set $J=$]inf $I, \sup I[$. For every set x such that $x \in J$ holds $(f \mid J)(x)=x$. For every real number x such that $x \in J$ holds $f \upharpoonright J$ is differentiable in x. For every real number x such that $x \in I$ holds $f_{I}^{\prime}(x)=1$.
Let us consider partial functions f, g from \mathbb{R} to \mathbb{R} and a non empty interval I. Now we state the propositions:
(19) Suppose $I \subseteq \operatorname{dom}(f+g)$ and f is differentiable on interval I and g is differentiable on interval I. Then
(i) $f+g$ is differentiable on interval I, and
(ii) $(f+g)_{I}^{\prime}=f_{I}^{\prime}+g_{I}^{\prime}$, and
(iii) for every real number x such that $x \in I$ holds $(f+g)_{I}^{\prime}(x)=f_{I}^{\prime}(x)+$ $g_{I}^{\prime}(x)$.
Proof: Set $J=] \inf I$, sup I [. For every real number x such that $x \in J$ holds $(f+g) \upharpoonright J$ is differentiable in x. For every element x of \mathbb{R} such that $x \in \operatorname{dom}(f+g)_{I}^{\prime}$ holds $(f+g)_{I}^{\prime}(x)=\left(f_{I}^{\prime}+g_{I}^{\prime}\right)(x)$.
(20) Suppose $I \subseteq \operatorname{dom}(f-g)$ and f is differentiable on interval I and g is differentiable on interval I. Then
(i) $f-g$ is differentiable on interval I, and
(ii) $(f-g)_{I}^{\prime}=f_{I}^{\prime}-g_{I}^{\prime}$, and
(iii) for every real number x such that $x \in I$ holds $(f-g)_{I}^{\prime}(x)=f_{I}^{\prime}(x)-$ $g_{I}^{\prime}(x)$.
Proof: Reconsider $J=\operatorname{linf} I$, $\sup I$ as an open subset of \mathbb{R}. $J \subseteq I$. For every real number x such that $x \in J$ holds $(f-g) \upharpoonright J$ is differentiable in x. For every element x of \mathbb{R} such that $x \in \operatorname{dom}(f-g)_{I}^{\prime}$ holds $(f-g)_{I}^{\prime}(x)=$ $\left(f_{I}^{\prime}-g_{I}^{\prime}\right)(x)$.
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and real numbers x_{0}, r. Now we state the propositions:
(21) If f is right differentiable in x_{0}, then $r \cdot f$ is right differentiable in x_{0} and $(r \cdot f)_{+}^{\prime}\left(x_{0}\right)=r \cdot f_{+}^{\prime}\left(x_{0}\right)$.
(22) If f is left differentiable in x_{0}, then $r \cdot f$ is left differentiable in x_{0} and $(r \cdot f)_{-}^{\prime}\left(x_{0}\right)=r \cdot f_{-}^{\prime}\left(x_{0}\right)$.
(23) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a non empty interval I, and a real number r. Suppose f is differentiable on interval I. Then
(i) $r \cdot f$ is differentiable on interval I, and
(ii) $(r \cdot f)_{I}^{\prime}=r \cdot f_{I}^{\prime}$, and
(iii) for every real number x such that $x \in I$ holds $(r \cdot f)_{I}^{\prime}(x)=r \cdot f_{I}^{\prime}(x)$.

Proof: For every real number x such that $x \in] \inf I$, sup $I[$ holds $(r$. $f) \upharpoonright] \inf I, \sup I[$ is differentiable in x. For every element x of \mathbb{R} such that $x \in \operatorname{dom}(r \cdot f)_{I}^{\prime}$ holds $(r \cdot f)_{I}^{\prime}(x)=\left(r \cdot f_{I}^{\prime}\right)(x)$.
Let us consider partial functions f, g from \mathbb{R} to \mathbb{R} and a non empty interval I. Now we state the propositions:
(24) Suppose f is differentiable on interval I and g is differentiable on interval I. Then
(i) $f \cdot g$ is differentiable on interval I, and
(ii) $(f \cdot g)_{I}^{\prime}=g \cdot f_{I}^{\prime}+f \cdot g_{I}^{\prime}$, and
(iii) for every real number x such that $x \in I$ holds $(f \cdot g)_{I}^{\prime}(x)=g(x)$. $f_{I}^{\prime}(x)+f(x) \cdot g_{I}^{\prime}(x)$.
Proof: Reconsider $J=] \inf I$, $\sup I[$ as an open subset of $\mathbb{R} . J \subseteq I$. For every element x of \mathbb{R} such that $x \in \operatorname{dom}(f \cdot g)_{I}^{\prime}$ holds $(f \cdot g)_{I}^{\prime}(x)=$ $\left(g \cdot f_{I}^{\prime}+f \cdot g_{I}^{\prime}\right)(x)$.
(25) Suppose $I \subseteq \operatorname{dom}\left(\frac{f}{g}\right)$ and f is differentiable on interval I and g is differentiable on interval I. Then
(i) $\frac{f}{g}$ is differentiable on interval I, and
(ii) $\left(\frac{f}{g}\right)_{I}^{\prime}=\frac{f_{I}^{\prime} \cdot g-g_{I}^{\prime} \cdot f}{g^{2}}$, and
(iii) for every real number x such that $x \in I$ holds $\left(\frac{f}{g}\right)_{I}^{\prime}(x)=$ $\frac{f_{I}^{\prime}(x) \cdot g(x)-g_{I}^{\prime}(x) \cdot f(x)}{g(x)^{2}}$.
Proof: Reconsider $J=\inf I$, $\sup I$ as an open subset of $\mathbb{R} . J \subseteq I$. For every set x such that $x \in I$ holds $g(x) \neq 0$. For every element x of \mathbb{R} such that $x \in \operatorname{dom}\left(\frac{f}{g}\right)_{I}^{\prime}$ holds $\left(\frac{f}{g}\right)_{I}^{\prime}(x)=\left(\frac{f_{I}^{\prime} \cdot g-g_{I}^{\prime} \cdot f}{g^{2}}\right)(x)$.

4. One-Sided Continuity

Now we state the proposition:
(26) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number x_{0}. Suppose $x_{0} \in \operatorname{dom} f$ and f is continuous in x_{0}. Then f is left continuous in x_{0} and right continuous in x_{0}.
Let us consider a real number x_{0} and a partial function f from \mathbb{R} to \mathbb{R}. Now we state the propositions:
(27) f is left continuous in x_{0} if and only if $x_{0} \in \operatorname{dom} f$ and for every real number e such that $0<e$ there exists a real number d such that $0<d$ and for every real number x such that $x \in \operatorname{dom} f$ and $x_{0}-d<x<x_{0}$ holds $\left|f(x)-f\left(x_{0}\right)\right|<e$.
(28) f is right continuous in x_{0} if and only if $x_{0} \in \operatorname{dom} f$ and for every real number e such that $0<e$ there exists a real number d such that $0<d$ and for every real number x such that $x \in \operatorname{dom} f$ and $x_{0}<x<x_{0}+d$ holds $\left|f(x)-f\left(x_{0}\right)\right|<e$.
(29) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number x_{0}. Suppose f is left continuous in x_{0} and right continuous in x_{0}. Then f is continuous in x_{0}.
Proof: For every real number e such that $0<e$ there exists a real number d such that $0<d$ and for every real number x such that $x \in \operatorname{dom} f$ and $\left|x-x_{0}\right|<d$ holds $\left|f(x)-f\left(x_{0}\right)\right|<e$.
Let us consider a real number x_{0} and a partial function f from \mathbb{R} to \mathbb{R}. Now we state the propositions:
(30) Suppose f is left continuous in x_{0} and for every real number r such that $r<x_{0}$ there exists a real number g such that $r<g<x_{0}$ and $g \in \operatorname{dom} f$. Then
(i) f is left convergent in x_{0}, and
(ii) $\lim _{x_{0}-} f=f\left(x_{0}\right)$.
(31) Suppose f is right continuous in x_{0} and for every real number r such that $x_{0}<r$ there exists a real number g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$. Then
(i) f is right convergent in x_{0}, and
(ii) $\lim _{x_{0}+} f=f\left(x_{0}\right)$.
(32) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number x_{0}. Suppose $x_{0} \in \operatorname{dom} f$ and f is right convergent in x_{0} and $\lim _{x_{0}+} f=f\left(x_{0}\right)$. Then f is right continuous in x_{0}.
(33) Let us consider a real number x_{0}, and a partial function f from \mathbb{R} to \mathbb{R}. Suppose $x_{0} \in \operatorname{dom} f$ and f is left convergent in x_{0} and $\lim _{x_{0}-} f=f\left(x_{0}\right)$. Then f is left continuous in x_{0}.
(34) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a real number x_{0}. Suppose f is convergent in x_{0} and $\lim _{x_{0}} f=f\left(x_{0}\right)$. Then f is continuous in x_{0}.
Proof: For every real number e such that $0<e$ there exists a real number d such that $0<d$ and for every real number x such that $x \in \operatorname{dom} f$ and $\left|x-x_{0}\right|<d$ holds $\left|f(x)-f\left(x_{0}\right)\right|<e$.

From now on h denotes a non-zero, 0-convergent sequence of real numbers and c denotes a constant sequence of real numbers.

Let us consider a partial function f from \mathbb{R} to \mathbb{R} and a real number x_{0}. Now we state the propositions:
(35) If f is right continuous in x_{0}, then $f \upharpoonright\left[x_{0},+\infty\left[\right.\right.$ is continuous in x_{0}.

Proof: $x_{0} \in \operatorname{dom} f$ and for every real number e such that $0<e$ there exists a real number d such that $0<d$ and for every real number x such that $x \in \operatorname{dom} f$ and $x_{0}<x<x_{0}+d$ holds $\left|f(x)-f\left(x_{0}\right)\right|<e$. Set $f_{1}=f \upharpoonright\left[x_{0},+\infty[\right.$. For every real number e such that $0<e$ there exists a real number d such that $0<d$ and for every real number x such that $x \in \operatorname{dom} f_{1}$ and $\left|x-x_{0}\right|<d$ holds $\left|f_{1}(x)-f_{1}\left(x_{0}\right)\right|<e$.
(36) If f is left continuous in x_{0}, then $\left.f \upharpoonright\right]-\infty, x_{0}$] is continuous in x_{0}.

Proof: $x_{0} \in \operatorname{dom} f$ and for every real number e such that $0<e$ there exists a real number d such that $0<d$ and for every real number x such that $x \in \operatorname{dom} f$ and $x_{0}-d<x<x_{0}$ holds $\left|f(x)-f\left(x_{0}\right)\right|<e$. Set $\left.\left.f_{1}=f \upharpoonright\right]-\infty, x_{0}\right]$. For every real number e such that $0<e$ there exists a real number d such that $0<d$ and for every real number x such that $x \in \operatorname{dom} f_{1}$ and $\left|x-x_{0}\right|<d$ holds $\left|f_{1}(x)-f_{1}\left(x_{0}\right)\right|<e$.
(37) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and a non empty interval I. If f is differentiable on interval I, then $f\lceil I$ is continuous.
Proof: For every real number x such that $x \in \operatorname{dom}(f \upharpoonright I)$ holds $f \upharpoonright I$ is continuous in x.
(38) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, and non empty intervals I, J. Suppose f is differentiable on interval I and $J \subseteq I$ and $\inf J<\sup J$. Then
(i) f is differentiable on interval J, and
(ii) for every real number x such that $x \in J$ holds $f_{I}^{\prime}(x)=f_{J}^{\prime}(x)$.

Proof: For every real number x such that $x \in J$ holds if $x=\inf J$, then $f \upharpoonright J$ is right differentiable in x and if $x=\sup J$, then $f \upharpoonright J$ is left differentiable in x and if $x \in] \inf J, \sup J[$, then f is differentiable in x. For every real number x such that $x \in J$ holds $f_{I}^{\prime}(x)=f_{J}^{\prime}(x)$.
(39) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, an open subset Z of \mathbb{R}, and a non empty interval I. Suppose $I \subseteq Z$ and $\inf I<\sup I$ and f is differentiable on Z. Then f is differentiable on interval I.
Proof: For every real number x such that $x \in I$ holds if $x=\inf I$, then $f \upharpoonright I$ is right differentiable in x and if $x=\sup I$, then $f \upharpoonright I$ is left differentiable in x and if $x \in] \inf I, \sup I[$, then f is differentiable in x.

5. Chain Rule

From now on R, R_{1}, R_{2} denote rests and L, L_{1}, L_{2} denote linear functions.
Let us consider a real number x_{0} and partial functions f, g from \mathbb{R} to \mathbb{R}. Now we state the propositions:
(40) Suppose f is right differentiable in x_{0} and g is differentiable in $f\left(x_{0}\right)$. Then
(i) $g \cdot f$ is right differentiable in x_{0}, and
(ii) $(g \cdot f)_{+}^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{+}^{\prime}\left(x_{0}\right)$.

Proof: Consider r being a real number such that $r>0$ and $\left[x_{0}, x_{0}+r\right] \subseteq$ $\operatorname{dom}(g \cdot f)$. For every h and c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq$ $\operatorname{dom}(g \cdot f)$ and for every natural number $n, h(n)>0$ holds $h^{-1} \cdot\left(\left(g \cdot f_{*}(h+\right.\right.$ $\left.c))-\left(g \cdot f_{*} c\right)\right)$ is convergent and $\lim \left(h^{-1} \cdot\left(\left(g \cdot f_{*}(h+c)\right)-\left(g \cdot f_{*} c\right)\right)\right)=$ $g^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{+}^{\prime}\left(x_{0}\right)$.
(41) Suppose f is left differentiable in x_{0} and g is differentiable in $f\left(x_{0}\right)$. Then
(i) $g \cdot f$ is left differentiable in x_{0}, and
(ii) $(g \cdot f)_{-}^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{-}^{\prime}\left(x_{0}\right)$.

Proof: Consider r being a real number such that $r>0$ and $\left[x_{0}-r, x_{0}\right] \subseteq$ $\operatorname{dom}(g \cdot f)$. For every h and c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq$ $\operatorname{dom}(g \cdot f)$ and for every natural number $n, h(n)<0$ holds $h^{-1} \cdot\left(\left(g \cdot f_{*}(h+\right.\right.$ $\left.c))-\left(g \cdot f_{*} c\right)\right)$ is convergent and $\lim \left(h^{-1} \cdot\left(\left(g \cdot f_{*}(h+c)\right)-\left(g \cdot f_{*} c\right)\right)\right)=$ $g^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{-}^{\prime}\left(x_{0}\right)$.
(42) Suppose f is right differentiable in x_{0} and g is right differentiable in $f\left(x_{0}\right)$ and for every real number r_{1} such that $r_{1}>0$ there exists a real number r_{0} such that $r_{0}>0$ and $\left[x_{0}, x_{0}+r_{0}\right] \subseteq \operatorname{dom}\left(\left[f\left(x_{0}\right), f\left(x_{0}\right)+r_{1}\right] 1 f\right)$. Then
(i) $g \cdot f$ is right differentiable in x_{0}, and
(ii) $(g \cdot f)_{+}^{\prime}\left(x_{0}\right)=g_{+}^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{+}^{\prime}\left(x_{0}\right)$.

Proof: Consider r_{1} being a real number such that $r_{1}>0$ and $\left[f\left(x_{0}\right), f\left(x_{0}\right)\right.$ $\left.+r_{1}\right] \subseteq \operatorname{dom} g$. Consider r_{0} being a real number such that $r_{0}>0$ and $\left[x_{0}, x_{0}+r_{0}\right] \subseteq \operatorname{dom}\left(\left[f\left(x_{0}\right), f\left(x_{0}\right)+r_{1}\right] \mid f\right)$. For every h and c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom}(g \cdot f)$ and for every natural number $n, h(n)>0$ holds $h^{-1} \cdot\left(\left(g \cdot f_{*}(h+c)\right)-\left(g \cdot f_{*} c\right)\right)$ is convergent and $\lim \left(h^{-1} \cdot\left(\left(g \cdot f_{*}(h+c)\right)-\left(g \cdot f_{*} c\right)\right)\right)=g_{+}^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{+}^{\prime}\left(x_{0}\right)$.
(43) Suppose f is left differentiable in x_{0} and g is right differentiable in $f\left(x_{0}\right)$ and for every real number r_{1} such that $r_{1}>0$ there exists a real number r_{0} such that $r_{0}>0$ and $\left[x_{0}-r_{0}, x_{0}\right] \subseteq \operatorname{dom}\left(\left[f\left(x_{0}\right), f\left(x_{0}\right)+r_{1}\right] 1 f\right)$. Then
(i) $g \cdot f$ is left differentiable in x_{0}, and
(ii) $(g \cdot f)_{-}^{\prime}\left(x_{0}\right)=g_{+}^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{-}^{\prime}\left(x_{0}\right)$.

Proof: Consider r_{1} being a real number such that $r_{1}>0$ and $\left[f\left(x_{0}\right), f\left(x_{0}\right)\right.$ $\left.+r_{1}\right] \subseteq \operatorname{dom} g$. Consider r_{0} being a real number such that $r_{0}>0$ and $\left[x_{0}-r_{0}, x_{0}\right] \subseteq \operatorname{dom}\left(\left[f\left(x_{0}\right), f\left(x_{0}\right)+r_{1}\right] 1 f\right)$. For every h and c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom}(g \cdot f)$ and for every natural number $n, h(n)<0$ holds $h^{-1} \cdot\left(\left(g \cdot f_{*}(h+c)\right)-\left(g \cdot f_{*} c\right)\right)$ is convergent and $\lim \left(h^{-1} \cdot\left(\left(g \cdot f_{*}(h+c)\right)-\left(g \cdot f_{*} c\right)\right)\right)=g_{+}^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{-}^{\prime}\left(x_{0}\right)$.
(44) Suppose f is differentiable in x_{0} and g is right differentiable in $f\left(x_{0}\right)$ and for every real number r_{1} such that $r_{1}>0$ there exists a real number r_{0} such that $r_{0}>0$ and $\left[x_{0}-r_{0}, x_{0}+r_{0}\right] \subseteq \operatorname{dom}\left(\left[f\left(x_{0}\right), f\left(x_{0}\right)+r_{1}\right] 1 f\right)$. Then
(i) $g \cdot f$ is differentiable in x_{0}, and
(ii) $(g \cdot f)^{\prime}\left(x_{0}\right)=g_{+}^{\prime}\left(f\left(x_{0}\right)\right) \cdot f^{\prime}\left(x_{0}\right)$.

The theorem is a consequence of (42) and (43).
(45) Suppose f is right differentiable in x_{0} and g is left differentiable in $f\left(x_{0}\right)$ and for every real number r_{1} such that $r_{1}>0$ there exists a real number r_{0} such that $r_{0}>0$ and $\left[x_{0}, x_{0}+r_{0}\right] \subseteq \operatorname{dom}\left(\left[f\left(x_{0}\right)-r_{1}, f\left(x_{0}\right)\right] 1 f\right)$. Then
(i) $g \cdot f$ is right differentiable in x_{0}, and
(ii) $(g \cdot f)_{+}^{\prime}\left(x_{0}\right)=g_{-}^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{+}^{\prime}\left(x_{0}\right)$.

Proof: Consider r_{1} being a real number such that $r_{1}>0$ and $\left[f\left(x_{0}\right)-\right.$ $\left.r_{1}, f\left(x_{0}\right)\right] \subseteq \operatorname{dom} g$. Consider r_{0} being a real number such that $r_{0}>0$ and $\left[x_{0}, x_{0}+r_{0}\right] \subseteq \operatorname{dom}\left(\left[f\left(x_{0}\right)-r_{1}, f\left(x_{0}\right)\right] 1 f\right)$. For every h and c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom}(g \cdot f)$ and for every natural number $n, h(n)>0$ holds $h^{-1} \cdot\left(\left(g \cdot f_{*}(h+c)\right)-\left(g \cdot f_{*} c\right)\right)$ is convergent and $\lim \left(h^{-1} \cdot\left(\left(g \cdot f_{*}(h+c)\right)-\left(g \cdot f_{*} c\right)\right)\right)=g_{-}^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{+}^{\prime}\left(x_{0}\right)$.
(46) Suppose f is left differentiable in x_{0} and g is left differentiable in $f\left(x_{0}\right)$ and for every real number r_{1} such that $r_{1}>0$ there exists a real number r_{0} such that $r_{0}>0$ and $\left[x_{0}-r_{0}, x_{0}\right] \subseteq \operatorname{dom}\left(\left[f\left(x_{0}\right)-r_{1}, f\left(x_{0}\right)\right] 1 f\right)$. Then
(i) $g \cdot f$ is left differentiable in x_{0}, and
(ii) $(g \cdot f)_{-}^{\prime}\left(x_{0}\right)=g_{-}^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{-}^{\prime}\left(x_{0}\right)$.

Proof: Consider r_{1} being a real number such that $r_{1}>0$ and $\left[f\left(x_{0}\right)-\right.$ $\left.r_{1}, f\left(x_{0}\right)\right] \subseteq \operatorname{dom} g$. Consider r_{0} being a real number such that $r_{0}>0$ and $\left[x_{0}-r_{0}, x_{0}\right] \subseteq \operatorname{dom}\left(\left[f\left(x_{0}\right)-r_{1}, f\left(x_{0}\right)\right] 1 f\right)$. For every h and c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq \operatorname{dom}(g \cdot f)$ and for every natural number $n, h(n)<0$ holds $h^{-1} \cdot\left(\left(g \cdot f_{*}(h+c)\right)-\left(g \cdot f_{*} c\right)\right)$ is convergent and $\lim \left(h^{-1} \cdot\left(\left(g \cdot f_{*}(h+c)\right)-\left(g \cdot f_{*} c\right)\right)\right)=g_{-}^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{-}^{\prime}\left(x_{0}\right)$.
(47) Suppose f is differentiable in x_{0} and g is left differentiable in $f\left(x_{0}\right)$ and for every real number r_{1} such that $r_{1}>0$ there exists a real number r_{0} such that $r_{0}>0$ and $\left[x_{0}-r_{0}, x_{0}+r_{0}\right] \subseteq \operatorname{dom}\left(\left[f\left(x_{0}\right)-r_{1}, f\left(x_{0}\right)\right] 1 f\right)$. Then
(i) $g \cdot f$ is differentiable in x_{0}, and
(ii) $(g \cdot f)^{\prime}\left(x_{0}\right)=g_{-}^{\prime}\left(f\left(x_{0}\right)\right) \cdot f^{\prime}\left(x_{0}\right)$.

The theorem is a consequence of (45) and (46).
(48) Suppose f is right differentiable in x_{0} and g is right differentiable in $f\left(x_{0}\right)$ and there exists a real number r such that $r>0$ and $f \upharpoonright\left[x_{0}, x_{0}+r\right]$ is non-decreasing. Then
(i) $g \cdot f$ is right differentiable in x_{0}, and
(ii) $(g \cdot f)_{+}^{\prime}\left(x_{0}\right)=g_{+}^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{+}^{\prime}\left(x_{0}\right)$.

Proof: Consider R being a real number such that $R>0$ and $f \upharpoonright\left[x_{0}, x_{0}+R\right]$ is non-decreasing. $x_{0} \in \operatorname{dom} f$. For every real number r_{1} such that $r_{1}>$ 0 there exists a real number r_{0} such that $r_{0}>0$ and $\left[x_{0}, x_{0}+r_{0}\right] \subseteq$ $\operatorname{dom}\left(\left[f\left(x_{0}\right), f\left(x_{0}\right)+r_{1}\right] 1 f\right)$.
(49) Suppose f is left differentiable in x_{0} and g is right differentiable in $f\left(x_{0}\right)$ and there exists a real number r such that $r>0$ and $f \upharpoonright\left[x_{0}-r, x_{0}\right]$ is non-increasing. Then
(i) $g \cdot f$ is left differentiable in x_{0}, and
(ii) $(g \cdot f)_{-}^{\prime}\left(x_{0}\right)=g_{+}^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{-}^{\prime}\left(x_{0}\right)$.

Proof: Consider R being a real number such that $R>0$ and $f \upharpoonright\left[x_{0}-R, x_{0}\right]$ is non-increasing. $x_{0} \in \operatorname{dom} f$. For every real number r_{1} such that $r_{1}>$ 0 there exists a real number r_{0} such that $r_{0}>0$ and $\left[x_{0}-r_{0}, x_{0}\right] \subseteq$ $\operatorname{dom}\left(\left[f\left(x_{0}\right), f\left(x_{0}\right)+r_{1}\right] 1 f\right)$.
(50) Suppose f is right differentiable in x_{0} and g is left differentiable in $f\left(x_{0}\right)$ and there exists a real number r such that $r>0$ and $f \upharpoonright\left[x_{0}, x_{0}+r\right]$ is non-increasing. Then
(i) $g \cdot f$ is right differentiable in x_{0}, and
(ii) $(g \cdot f)_{+}^{\prime}\left(x_{0}\right)=g_{-}^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{+}^{\prime}\left(x_{0}\right)$.

Proof: Consider R being a real number such that $R>0$ and $f \upharpoonright\left[x_{0}, x_{0}+R\right]$ is non-increasing. $x_{0} \in \operatorname{dom} f$. For every real number r_{1} such that $r_{1}>$ 0 there exists a real number r_{0} such that $r_{0}>0$ and $\left[x_{0}, x_{0}+r_{0}\right] \subseteq$ $\operatorname{dom}\left(\left[f\left(x_{0}\right)-r_{1}, f\left(x_{0}\right)\right] 1 f\right)$.
(51) Suppose f is left differentiable in x_{0} and g is left differentiable in $f\left(x_{0}\right)$ and there exists a real number r such that $r>0$ and $f \upharpoonright\left[x_{0}-r, x_{0}\right]$ is non-decreasing. Then
(i) $g \cdot f$ is left differentiable in x_{0}, and
(ii) $(g \cdot f)_{-}^{\prime}\left(x_{0}\right)=g_{-}^{\prime}\left(f\left(x_{0}\right)\right) \cdot f_{-}^{\prime}\left(x_{0}\right)$.

Proof: Consider R being a real number such that $R>0$ and $f \upharpoonright\left[x_{0}-R, x_{0}\right]$ is non-decreasing. $x_{0} \in \operatorname{dom} f$. For every real number r_{1} such that $r_{1}>$ 0 there exists a real number r_{0} such that $r_{0}>0$ and $\left[x_{0}-r_{0}, x_{0}\right] \subseteq$ $\operatorname{dom}\left(\left[f\left(x_{0}\right)-r_{1}, f\left(x_{0}\right)\right] 1 f\right)$.
(52) Chain Rule:

Let us consider partial functions f, g from \mathbb{R} to \mathbb{R}, and non empty intervals I, J. Suppose f is differentiable on interval I and g is differentiable on interval J and $f^{\circ} I \subseteq J$. Then
(i) $g \cdot f$ is differentiable on interval I, and
(ii) $(g \cdot f)_{I}^{\prime}=g_{J}^{\prime} \cdot f \cdot f_{I}^{\prime}$.

The theorem is a consequence of (4), (5), (11), and (3).

References

[1] Tom M. Apostol. Mathematical Analysis. Addison-Wesley, 1969.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pakk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak.. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[4] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Improving real analysis in Coq: A user-friendly approach to integrals and derivatives In Chris Hawblitzel and Dale Miller, editors, Certified Programs and Proofs - Second International Conference, CPP 2012, Kyoto, Japan, December 13-15, 2012. Proceedings, volume 7679 of Lecture Notes in Computer Science, pages 289-304. Springer, 2012. doi 10.1007/978-3-642-35308-6_22
[5] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Formalization of real analysis: A survey of proof assistants and libraries. Mathematical Structures in Computer Scıence, 26:1196-1233, 2015.
[6] Ewa Burakowska and Beata Madras. Real function one-side differentiability Formalized Mathematics, 2(5):653-656, 1991.
[7] Noboru Endou. Improper integral. Part I. Formalized Mathematics, 29(4):201-220, 2021. doi:10.2478/forma-2021-0019
[8] Noboru Endou. Improper integral. Part II. Formalized Mathematics, 29(4):279-294, 2021. doi 10.2478/forma-2021-0024.
[9] Noboru Endou. Relationship between the Riemann and Lebesgue integrals. Formalized Mathematics, 29(4):185-199, 2021. doi 10.2478/forma-2021-0018
[10] Jacques D. Fleuriot. On the mechanization of real analysis in Isabelle/HOL. In Mark Aagaard and John Harrison, editors, Theorem Proving in Higher Order Logics, pages 145-161. Springer Berlin Heidelberg, 2000. ISBN 978-3-540-44659-0.
[11] Ruben Gamboa. Continuity and Differentiability, pages 301-315. Springer US, 2000. ISBN 978-1-4757-3188-0. doi 10.1007/978-1-4757-3188-0_18.
[12] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi 10.1007/s10817-015-9345-1
[13] Konrad Raczkowski and Paweł Sadowski. Real function differentiability Formalized Mathematics, 1(4):797-801, 1990.

Accepted March 31, 2023

