REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/14707
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorSchwarzweller, Christoph-
dc.date.accessioned2023-02-27T12:01:29Z-
dc.date.available2023-02-27T12:01:29Z-
dc.date.issued2022-
dc.identifier.citationFormalized Mathematics, Volume 30, Issue 4, Pages 281-294pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/14707-
dc.description.abstractThis is the second part of a two-part article formalizing existence and uniqueness of algebraic closures, using the Mizar [2], [1] formalism. Our proof follows Artin’s classical one as presented by Lang in [3]. In the first part we proved that for a given field F there exists a field extension E such that every nonconstant polynomial p ∈ F[X] has a root in E. Artin’s proof applies Kronecker’s construction to each polynomial p ∈ F[X]\F simultaneously. To do so we needed the polynomial ring F[X₁, X₂, ...] with infinitely many variables, one for each polynomal p ∈ F[X]\F. The desired field extension E then is F[X₁, X₂, ...]\I, where I is a maximal ideal generated by all nonconstant polynomials p ∈ F[X]. Note, that to show that I is maximal Zorn’s lemma has tobe applied. In this second part this construction is iterated giving an infinite sequence of fields, whose union establishes a field extension A of F, in which every non-constant polynomial p ∈ A[X] has a root. The field of algebraic elements of A then is an algebraic closure of F. To prove uniqueness of algebraic closures, e.g.that two algebraic closures of F are isomorphic over F, the technique of extending monomorphisms is applied: a monomorphism F−→A, where A is an algebraic closure of F can be extended to a monomorphism E−→A, where E is any algebraic extension of F. In case that E is algebraically closed this monomorphism is an isomorphism. Note that the existence of the extended monomorphism again relies on Zorn’s lemma.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectalgebraic closurespl
dc.subjectpolynomial rings with countably infinite numberof variablespl
dc.subjectEmil Artinpl
dc.titleExistence and Uniqueness of Algebraic Closurespl
dc.typeArticlepl
dc.rights.holder© 2022 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2022-0022-
dc.description.AffiliationInstitute of Informatics, University of Gdańsk, Polandpl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesSerge Lang. Algebra. Springer Verlag, 2002 (Revised Third Edition).pl
dc.description.referencesChristoph Schwarzweller. Field extensions and Kronecker’s construction. Formalized Mathematics, 27(3):229–235, 2019. doi:10.2478/forma-2019-0022.pl
dc.identifier.eissn1898-9934-
dc.description.volume30pl
dc.description.issue4pl
dc.description.firstpage281pl
dc.description.lastpage294pl
dc.identifier.citation2Formalized Mathematicspl
Występuje w kolekcji(ach):Formalized Mathematics, 2022, Volume 30, Issue 4

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
10.2478_forma-2022-0022.pdf285,18 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons