Existence and Uniqueness of Algebraic Closures

Christoph Schwarzweller (D)
Institute of Informatics
University of Gdańsk
Poland

Summary. This is the second part of a two-part article formalizing existence and uniqueness of algebraic closures, using the Mizar [2] , 1] formalism. Our proof follows Artin's classical one as presented by Lang in [3]. In the first part we proved that for a given field F there exists a field extension E such that every non-constant polynomial $p \in F[X]$ has a root in E. Artin's proof applies Kronecker's construction to each polynomial $p \in F[X] \backslash F$ simultaneously. To do so we needed the polynomial ring $F\left[X_{1}, X_{2}, \ldots\right]$ with infinitely many variables, one for each polynomal $p \in F[X] \backslash F$. The desired field extension E then is $F\left[X_{1}, X_{2}, \ldots\right] \backslash I$, where I is a maximal ideal generated by all non-constant polynomials $p \in F[X]$. Note, that to show that I is maximal Zorn's lemma has to be applied.

In this second part this construction is iterated giving an infinite sequence of fields, whose union establishes a field extension A of F, in which every nonconstant polynomial $p \in A[X]$ has a root. The field of algebraic elements of A then is an algebraic closure of F. To prove uniqueness of algebraic closures, e.g. that two algebraic closures of F are isomorphic over F, the technique of extending monomorphisms is applied: a monomorphism $F \longrightarrow A$, where A is an algebraic closure of F can be extended to a monomorphism $E \longrightarrow A$, where E is any algebraic extension of F. In case that E is algebraically closed this monomorphism is an isomorphism. Note that the existence of the extended monomorphism again relies on Zorn's lemma.

MSC: 12 F 0568 V 20
Keywords: algebraic closures; polynomial rings with countably infinite number of variables; Emil Artin

MML identifier: FIELD_12, version: 8.1.12 5.72.1435

1. Preliminaries

Let L be a non empty double loop structure. One can verify that the double loop structure of L is non empty. Let L be a non trivial double loop structure. One can verify that the double loop structure of L is non trivial. Let L be a non degenerated double loop structure. One can verify that the double loop structure of L is non degenerated. Let L be an add-associative double loop structure. One can check that the double loop structure of L is add-associative.

Let L be a right zeroed double loop structure. Let us note that the double loop structure of L is right zeroed. Let L be a right complementable double loop structure. Observe that the double loop structure of L is right complementable. Let L be an Abelian double loop structure. Let us observe that the double loop structure of L is Abelian. Let L be an associative double loop structure. One can check that the double loop structure of L is associative.

Let L be a well unital, non empty double loop structure. Observe that the double loop structure of L is well unital. Let L be a left distributive, non empty double loop structure. One can check that the double loop structure of L is left distributive. Let L be a right distributive, non empty double loop structure. Observe that the double loop structure of L is right distributive. Let L be a commutative double loop structure. One can verify that the double loop structure of L is commutative.

Let L be an integral domain-like, non empty double loop structure. Let us note that the double loop structure of L is integral domain-like. Let L be an almost left invertible double loop structure. Observe that the double loop structure of L is almost left invertible. Now we state the proposition:
(1) Let us consider a field F. Then the double loop structure of $F \approx F$.

Let F be a field. Let us note that there exists an extension of F which is strict. Let L be an F-monomorphic field. Let us note that there exists an extension of L which is F-homomorphic and F-monomorphic and there exists an element of the carrier of PolyRing (F) which is monic and irreducible. Let F be a non algebraic closed field. Observe that there exists an element of the carrier of $\operatorname{PolyRing}(F)$ which is monic and non constant and has not roots. Now we state the propositions:
(2) Let us consider a field F_{1}, an F_{1}-monomorphic, F_{1}-homomorphic field F_{2}, a monomorphism h of F_{1} and F_{2}, and an element p of the carrier of $\operatorname{PolyRing}\left(F_{1}\right)$. Then $(\operatorname{PolyHom}(h))(-p)=-(\operatorname{PolyHom}(h))(p)$.
(3) Let us consider a field F_{1}, an F_{1}-monomorphic, F_{1}-homomorphic field F_{2}, a monomorphism h of F_{1} and F_{2}, and elements p, q of the carrier of $\operatorname{PolyRing}\left(F_{1}\right)$. If $p \mid q$, then $(\operatorname{PolyHom}(h))(p) \mid(\operatorname{PolyHom}(h))(q)$.

Let F_{1} be a field, F_{2} be an F_{1}-monomorphic, F_{1}-homomorphic field, h be a monomorphism of F_{1} and F_{2}, and p be a non constant element of the carrier of PolyRing $\left(F_{1}\right)$. Let us observe that $(\operatorname{PolyHom}(h))(p)$ is non constant as an element of the carrier of PolyRing $\left(F_{2}\right)$.

Let R be a GCD domain and a, b be elements of R. We say that a and b are relatively prime if and only if
(Def. 1) 1_{R} is a GCD of a and b.
Let us consider a field F and elements p, q of the carrier of $\operatorname{PolyRing}(F)$. Now we state the propositions:
(4) p and q are relatively prime if and only if $\operatorname{gcd}(p, q)=\mathbf{1} . F$.
(5) If p and q are relatively prime, then p and q have no common roots.
(6) Let us consider a field F, and an element p of the carrier of $\operatorname{PolyRing}(F)$. Then there exists an extension E of F and there exists an F-algebraic element a of E such that $p=\operatorname{MinPoly}(a, F)$ if and only if p is monic and irreducible.
(7) Let us consider a field F, and an irreducible element p of the carrier of $\operatorname{PolyRing}(F)$. Then there exists an F-finite extension E of F such that
(i) $\operatorname{deg}(E, F)=\operatorname{deg}(p)$, and
(ii) p has a root in E.

The theorem is a consequence of (6).
(8) Let us consider a field F, and a non constant element p of the carrier of $\operatorname{PolyRing}(F)$. Then there exists an F-finite extension E of F such that
(i) p has a root in E, and
(ii) $\operatorname{deg}(E, F) \leqslant \operatorname{deg}(p)$.

The theorem is a consequence of (7).
(9) Let us consider a field F, an F-algebraic extension E of F, an E-extending extension K of F, and an element a of K. If a is E-algebraic, then a is F-algebraic.
(10) Let us consider fields F_{1}, F_{2}, L, an extension E_{1} of F_{1}, a E_{1}-extending extension K_{1} of F_{1}, a function h_{1} from F_{1} into L, a function h_{2} from E_{1} into L, and a function h_{3} from K_{1} into L. Suppose h_{2} is h_{1}-extending and h_{3} is h_{2}-extending. Then h_{3} is h_{1}-extending.
Let F be a field. Let us observe that every extension of F is F-monomorphic and F-homomorphic.

Let E be an extension of F. Let us note that there exists a field which is E-homomorphic, E-monomorphic, F-homomorphic, and F-monomorphic.

2. Sequences of Fields

A sequence is a function defined by
(Def. 2) $\quad \operatorname{dom} i t=\mathbb{N}$.
Let us observe that every sequence is \mathbb{N}-defined.
Let f be a binary relation. We say that f is field-yielding if and only if
(Def. 3) for every object x such that $x \in \operatorname{rng} f$ holds x is a field.
Observe that there exists a sequence which is field-yielding and every function which is field-yielding is also 1-sorted yielding.

Let f be a field-yielding sequence and i be an element of \mathbb{N}. One can check that the functor $f(i)$ yields a field. Let i be a natural number. Observe that the functor $f(i)$ yields a field.

The scheme RecExField deals with a field \mathcal{A} and a ternary predicate \mathcal{P} and states that
(Sch. 1) There exists a field-yielding sequence f such that $f(0)=\mathcal{A}$ and for every natural number $n, \mathcal{P}[n, f(n), f(n+1)]$
provided

- for every natural number n and for every field x, there exists a field y such that $\mathcal{P}[n, x, y]$.

Let f be a field-yielding sequence. We say that f is ascending if and only if
(Def. 4) for every element i of $\mathbb{N}, f(i+1)$ is an extension of $f(i)$.
Note that there exists a field-yielding sequence which is ascending.
Let f be a field-yielding sequence. The support of f yielding a non empty set is defined by the term
(Def. 5) U the set of all the carrier of $f(i)$ where i is an element of \mathbb{N}.
Now we state the propositions:
(11) Let us consider an ascending, field-yielding sequence f, elements i, j of \mathbb{N}, and an element a of $f(i)$. If $i \leqslant j$, then $a \in$ the carrier of $f(j)$.
Proof: Define \mathcal{P} [natural number] \equiv there exists an element k of \mathbb{N} such that $k=i+\$_{1}$ and $a \in$ the carrier of $f(k)$. For every natural number k, $\mathcal{P}[k]$. Consider n being a natural number such that $i+n=j$.
(12) Let us consider an ascending, field-yielding sequence f, and elements i, j of \mathbb{N}. If $i \leqslant j$, then $f(j)$ is an extension of $f(i)$.
Proof: Define \mathcal{P} [natural number] \equiv there exists an element k of \mathbb{N} such that $k=i+\$_{1}$ and $f(k)$ is an extension of $f(i) . \mathcal{P}[0]$. For every natural number $k, \mathcal{P}[k]$. Consider n being a natural number such that $i+n=j$.
(13) Let us consider an ascending, field-yielding sequence f, elements i, j of \mathbb{N}, elements x_{2}, y_{2} of $f(i)$, and elements x_{3}, y_{3} of $f(j)$. Suppose $x_{2}=x_{3}$ and $y_{2}=y_{3}$. Then
(i) $x_{2}+y_{2}=x_{3}+y_{3}$, and
(ii) $x_{2} \cdot y_{2}=x_{3} \cdot y_{3}$.

The theorem is a consequence of (12).
Let f be an ascending, field-yielding sequence. The functor addseq (f) yielding a binary operation on the support of f is defined by
(Def. 6) for every elements a, b of the support of f, there exists an element i of \mathbb{N} and there exist elements x, y of $f(i)$ such that $x=a$ and $y=b$ and $i t(a, b)=x+y$.
The functor multseq (f) yielding a binary operation on the support of f is defined by
(Def. 7) for every elements a, b of the support of f, there exists an element i of \mathbb{N} and there exist elements x, y of $f(i)$ such that $x=a$ and $y=b$ and $i t(a, b)=x \cdot y$.
The functor SeqField (f) yielding a strict double loop structure is defined by
(Def. 8) the carrier of $i t=$ the support of f and the addition of $i t=\operatorname{addseq}(f)$ and the multiplication of $i t=\operatorname{multseq}(f)$ and the one of $i t=1_{f(0)}$ and the zero of it $=0_{f(0)}$.
Now we state the propositions:
(14) Let us consider an ascending, field-yielding sequence f, and an element i of \mathbb{N}. Then
(i) $1_{\text {SeqField }(f)}=1_{f(i)}$, and
(ii) $0_{\text {SeqField }(f)}=0_{f(i)}$.

Proof: Define \mathcal{P} [natural number] \equiv there exists an element k of \mathbb{N} such that $k=\$_{1}$ and $1_{f(k)}=1_{f(0)}$ and $0_{f(k)}=0_{f(0)}$. For every natural number $k, \mathcal{P}[k]$.
(15) Let us consider an ascending, field-yielding sequence f, elements a, b of SeqField (f), an element i of \mathbb{N}, and elements x, y of $f(i)$. If $x=a$ and $y=b$, then $a+b=x+y$ and $a \cdot b=x \cdot y$. The theorem is a consequence of (13).
Let f be an ascending, field-yielding sequence. Observe that $\operatorname{SeqField}(f)$ is non degenerated and $\operatorname{SeqField}(f)$ is Abelian, add-associative, right zeroed, and right complementable and SeqField (f) is commutative, associative, well unital, distributive, and almost left invertible. Now we state the propositions:
(16) Let us consider an ascending, field-yielding sequence f, and an element i of \mathbb{N}. Then $f(i)$ is a subfield of $\operatorname{SeqField}(f)$.
Proof: Set $F=f(i)$. Set $K=\operatorname{SeqField}(f)$. The addition of $F=$ (the addition of K) $\upharpoonright($ the carrier of F). The multiplication of $F=$ (the multiplication of K) $\upharpoonright($ the carrier of $F) .1_{F}=1_{K}$ and $0_{F}=0_{K} . \square$
(17) Let us consider a field E, and an ascending, field-yielding sequence f. Suppose for every element i of $\mathbb{N}, f(i)$ is a subfield of E. Then $\operatorname{SeqField}(f)$ is a subfield of E.
Proof: Set $F=\operatorname{SeqField}(f)$. The carrier of $F \subseteq$ the carrier of K.
The addition of $F=($ the addition of $K) \upharpoonright($ the carrier of $F)$. The multiplication of $F=($ the multiplication of $K) \upharpoonright($ the carrier of $F)$.
(18) Let us consider an ascending, field-yielding sequence f, and a finite subset X of $\operatorname{SeqField}(f)$. Then there exists an element i of \mathbb{N} such that $X \subseteq$ the carrier of $f(i)$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite subset X of $\operatorname{SeqField}(f)$ such that $\overline{\bar{X}}=\$_{1}$ there exists an element i of \mathbb{N} such that $X \subseteq$ the carrier of $f(i) . \mathcal{P}[0]$. $\mathcal{P}[1]$. For every natural number $k, \mathcal{P}[k]$. Consider n being a natural number such that $\overline{\bar{X}}=n$. Consider i being an element of \mathbb{N} such that $X \subseteq$ the carrier of $f(i)$.

3. Maximal Algebraic and Algebraic Closed Fields

Let F be a field. We say that F is maximal algebraic if and only if
(Def. 9) for every F-algebraic extension E of $F, E \approx F$.
Let us consider a field F. Now we state the propositions:
(19) F is maximal algebraic if and only if F is algebraic closed. The theorem is a consequence of (7).
(20) $\quad F$ is algebraic closed if and only if every non constant polynomial over F has roots.
(21) F is algebraic closed if and only if for every irreducible element p of the carrier of PolyRing $(F), \operatorname{deg}(p)=1$.
(22) $\quad F$ is algebraic closed if and only if for every non constant polynomial p over F, p splits in F.
(23) F is algebraic closed if and only if every non constant, monic polynomial over F is a product of linear polynomials of F.
(24) F is algebraic closed if and only if for every elements p, q of the carrier of PolyRing $(F), p$ and q are relatively prime iff p and q have no common roots. The theorem is a consequence of (4) and (5).
(25) $\quad F$ is algebraic closed if and only if for every F-algebraic extension E of $F, E \approx F$. The theorem is a consequence of (19).
(26) F is algebraic closed if and only if for every F-finite extension E of F, $E \approx F$. The theorem is a consequence of (19).
Let us note that every field which is algebraic closed is also infinite.

4. Existence of Algebraic Closures

Let F be a field. A closure sequence of F is an ascending, field-yielding sequence defined by
(Def. 10) $\quad i t(0)=F$ and for every element i of \mathbb{N} and for every field K and for every extension E of K such that $K=i t(i)$ and $E=i t(i+1)$ for every non constant element p of the carrier of $\operatorname{PolyRing}(K), p$ has a root in E.
Now we state the proposition:
(27) Let us consider an ascending, field-yielding sequence f, and a polynomial p over $\operatorname{SeqField}(f)$. Then there exists an element i of \mathbb{N} such that p is a polynomial over $f(i)$. The theorem is a consequence of (18) and (16).
Let F be a field and f be a closure sequence of F. Let us observe that $\operatorname{SeqField}(f)$ is F-extending and $\operatorname{SeqField}(f)$ is algebraic closed.

Now we state the proposition:
(28) Let us consider a field F. Then there exists an extension E of F such that E is algebraic closed.
Let F be a field. An algebraic closure of F is an extension of F defined by
(Def. 11) it is F-algebraic and algebraic closed.
Note that every algebraic closure of F is F-algebraic and algebraic closed and there exists an algebraic closed field which is F-homomorphic and F monomorphic. Now we state the propositions:
(29) Let us consider a field F. Then there exists a field E such that E is an algebraic closure of F.
(30) Let us consider a field F, and an F-algebraic extension E of F. Then there exists an algebraic closure A of F such that E is a subfield of A.
Let F be a field and E be an F-algebraic extension of F. Let us observe that there exists an algebraic closure of F which is E-extending.

Now we state the propositions:
(31) Let us consider a field F, and an F-algebraic extension E of F. Then every algebraic closure of E is an algebraic closure of F.
(32) Let us consider a field F, an extension E of F, and an algebraic closure A of F. If A is E-extending, then A is an algebraic closure of E.
(33) Let us consider a field F, and algebraic closures A_{1}, A_{2} of F. If A_{1} is A_{2}-extending, then $A_{2} \approx A_{1}$. The theorem is a consequence of (25).

5. Some More Preliminaries

Let R be a ring and S be an R-homomorphic ring. Observe that there exists a ring which is S-homomorphic and R-homomorphic.

Let T be an S-homomorphic ring, f be an additive function from R into S, and g be an additive function from S into T. Let us note that $g \cdot f$ is additive as a function from R into T.

Let f be a multiplicative function from R into S and g be a multiplicative function from S into T. Let us note that $g \cdot f$ is multiplicative as a function from R into T.

Let f be a unity-preserving function from R into S and g be a unitypreserving function from S into T. Let us note that $g \cdot f$ is unity-preserving as a function from R into T. Now we state the propositions:
(34) Let us consider a field F, and an extension E of F. Then id_{F} is a monomorphism of F and E.
Proof: Reconsider $f=\operatorname{id}_{F}$ as a function from F into $E . f$ is additive, multiplicative, unity-preserving, and monomorphic.
(35) Let us consider a ring R, an R-homomorphic ring S, an S-homomorphic, R-homomorphic ring T, an additive function f from R into S, and an additive function g from S into T. Then $\operatorname{PolyHom}(g \cdot f)=\operatorname{PolyHom}(g)$. PolyHom (f).
(36) Let us consider a ring R, an R-homomorphic ring S, an R-homomorphic, S-homomorphic ring T, an additive function f from R into S, and an additive function g from S into T. Suppose $g \cdot f=\mathrm{id}_{R}$. Then $\operatorname{PolyHom}(g \cdot f)=$ $\operatorname{id}_{\text {PolyRing }(R)}$. The theorem is a consequence of (35).
(37) Let us consider fields F_{1}, F_{2}, and an extension E of F_{1}. If $F_{1} \approx F_{2}$, then E is an extension of F_{2}.
(38) Let us consider fields F_{1}, F_{2}. Suppose $F_{1} \approx F_{2}$. Then
(i) $0 . F_{1}=\mathbf{0} \cdot F_{2}$, and
(ii) $1 . F_{1}=1 \cdot F_{2}$.
(39) Let us consider fields F_{1}, F_{2}, and a polynomial p over F_{1}. If $F_{1} \approx F_{2}$, then p is a polynomial over F_{2}.
(40) Let us consider fields F_{1}, F_{2}, and a non zero polynomial p over F_{1}. If $F_{1} \approx F_{2}$, then p is a non zero polynomial over F_{2}. The theorem is a consequence of (39) and (38).
(41) Let us consider fields F_{1}, F_{2}, a polynomial p over F_{1}, a polynomial q over F_{2}, an element a of F_{1}, and an element b of F_{2}. Suppose $F_{1} \approx F_{2}$ and $p=q$ and $a=b$. Then $\operatorname{eval}(p, a)=\operatorname{eval}(q, b)$.
(42) Let us consider fields F_{1}, F_{2}, an extension E_{1} of F_{1}, an extension E_{2} of F_{2}, a polynomial p over F_{1}, a polynomial q over F_{2}, an element a of E_{1}, and an element b of E_{2}. Suppose $F_{1} \approx F_{2}$ and $E_{1} \approx E_{2}$ and $p=q$ and $a=b$. Then $\operatorname{ExtEval}(p, a)=\operatorname{ExtEval}(q, b)$. The theorem is a consequence of (41).
(43) Let us consider fields F_{1}, F_{2}, and an F_{1}-algebraic extension E of F_{1}. If $F_{1} \approx F_{2}$, then E is an F_{2}-algebraic extension of F_{2}. The theorem is a consequence of (37), (40), and (42).
(44) Let us consider fields F_{1}, F_{2}, and an algebraic closure E of F_{1}. If $F_{1} \approx F_{2}$, then E is an algebraic closure of F_{2}. The theorem is a consequence of (43).
Let X be a set. We say that X is field-membered if and only if
(Def. 12) for every object x such that $x \in X$ holds x is a field.
Observe that there exists a set which is field-membered and non empty.
Let X be a non empty, field-membered set.
One can check that an element of X is a field. Let F be a field. The functor SubFields (F) yielding a set is defined by
(Def. 13) for every object $o, o \in i t$ iff there exists a strict field K such that $o=K$ and K is a subfield of F.
One can check that SubFields (F) is non empty and field-membered. Now we state the proposition:
(45) Let us consider fields F, K. Then $K \in \operatorname{SubFields}(F)$ if and only if K is a strict subfield of F.

6. Uniqueness of Algebraic Closures

Let F be a field, E be an extension of F, L be an F-monomorphic field, and f be a monomorphism of F and L. The functor $\operatorname{ExtSet}(f, E)$ yielding a non empty set is defined by the term
(Def. 14) $\quad\{\langle K, g\rangle$, where K is an element of $\operatorname{SubFields}(E), g$ is a function from K into L : there exists an extension K_{1} of F and there exists a function g_{1} from K_{1} into L such that $K_{1}=K$ and $g_{1}=g$ and g_{1} is monomorphic and f-extending\}.
Note that every element of $\operatorname{ExtSet}(f, E)$ is pair.

Let p be an element of $\operatorname{ExtSet}(f, E)$. One can verify that the functor $(p)_{1}$ yields a strict extension of F. One can verify that the functor $(p)_{\mathbf{2}}$ yields a function from $(p)_{1}$ into L. Now we state the proposition:
(46) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, a strict extension K of F, and a function g from K into L. Suppose g is monomorphic. Then $\langle K, g\rangle \in \operatorname{ExtSet}(f, E)$ if and only if E is an extension of K and F is a subfield of K and g is f-extending. The theorem is a consequence of (45).
Let F be a field, E be an extension of F, L be an F-monomorphic field, f be a monomorphism of F and L, and p, q be elements of $\operatorname{ExtSet}(f, E)$. We say that $p \leqslant q$ if and only if
(Def. 15) $(q)_{\mathbf{1}}$ is an extension of $(p)_{\mathbf{1}}$ and for every extension K of $(p)_{\mathbf{1}}$ and for every function g from K into L such that $K=(q)_{1}$ and $g=(q)_{\mathbf{2}}$ holds g is $(p)_{\mathbf{2}}$-extending.
Let S be a non empty subset of $\operatorname{ExtSet}(f, E)$. We say that S is ascending if and only if
(Def. 16) for every elements p, q of $S, p \leqslant q$ or $q \leqslant p$.
One can check that there exists a non empty subset of $\operatorname{ExtSet}(f, E)$ which is ascending. Now we state the propositions:
(47) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, and an element p of $\operatorname{ExtSet}(f, E)$. Then $p \leqslant p$.
(48) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, and elements p, q of $\operatorname{ExtSet}(f, E)$. If $p \leqslant q \leqslant p$, then $p=q$.
(49) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, and elements p, q, r of $\operatorname{ExtSet}(f, E)$. If $p \leqslant q \leqslant r$, then $p \leqslant r$.
Let F be a field, E be an extension of F, L be an F-monomorphic field, f be a monomorphism of F and L, and S be a non empty subset of $\operatorname{ExtSet}(f, E)$. The functor unionCarrier (S, f, E) yielding a non empty set is defined by the term
(Def. 17) \bigcup the set of all the carrier of $(p)_{\mathbf{1}}$ where p is an element of S.
Let S be an ascending, non empty subset of $\operatorname{ExtSet}(f, E)$. The functors: union $\operatorname{Add}(S, f, E)$ and unionMult (S, f, E) yielding binary operations on union $\operatorname{Carrier}(S, f, E)$ are defined by conditions
(Def. 18) for every elements a, b of unionCarrier (S, f, E), there exists an element p of S and there exist elements x, y of $(p)_{\mathbf{1}}$ such that $x=a$ and $y=b$ and
unionAdd $(S, f, E)(a, b)=x+y$,
(Def. 19) for every elements a, b of unionCarrier (S, f, E), there exists an element p of S and there exist elements x, y of $(p)_{\mathbf{1}}$ such that $x=a$ and $y=b$ and unionMult $(S, f, E)(a, b)=x \cdot y$,
respectively. The functors: unionOne (S, f, E) and unionZero (S, f, E) yielding elements of unionCarrier (S, f, E) are defined by conditions
(Def. 20) there exists an element p of S such that unionOne $(S, f, E)=1_{(p)_{1}}$,
(Def. 21) there exists an element p of S such that unionZero $(S, f, E)=0_{(p)_{1}}$, respectively. The functor unionField (S, f, E) yielding a strict double loop structure is defined by
(Def. 22) the carrier of $i t=$ unionCarrier (S, f, E) and the addition of $i t=$ union $\operatorname{Add}(S, f, E)$ and the multiplication of $i t=\operatorname{unionMult}(S, f, E)$ and the one of $i t=$ unionOne (S, f, E) and the zero of $i t=$ unionZero (S, f, E).
Now we state the propositions:
(50) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, a non empty subset S of $\operatorname{ExtSet}(f, E)$, elements p, q of S, and an element a of $(p)_{\mathbf{1}}$. If $p \leqslant q$, then $a \in$ the carrier of $(q)_{1}$.
(51) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, an ascending, non empty subset S of $\operatorname{ExtSet}(f, E)$, and an element p of S. Then
(i) $1_{\text {unionField }(S, f, E)}=1_{(p)_{1}}$, and
(ii) $0_{\text {unionField }(S, f, E)}=0_{(p)_{1}}$.
(52) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, an ascending, non empty subset S of $\operatorname{ExtSet}(f, E)$, elements a, b of unionField (S, f, E), an element p of S, and elements x, y of $(p)_{\mathbf{1}}$. If $x=a$ and $y=b$, then $a+b=x+y$ and $a \cdot b=x \cdot y$.
Let F be a field, E be an extension of F, L be an F-monomorphic field, f be a monomorphism of F and L, and S be an ascending, non empty subset of $\operatorname{ExtSet}(f, E)$. Let us observe that unionField (S, f, E) is non degenerated and unionField (S, f, E) is Abelian, add-associative, right zeroed, and right complementable and unionField (S, f, E) is commutative, associative, well unital, distributive, and almost left invertible. Now we state the proposition:
(53) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, an ascending, non empty subset S of $\operatorname{ExtSet}(f, E)$, and an element p of S. Then $(p)_{\mathbf{1}}$ is a subfield of unionField (S, f, E).

Proof: Set $K=$ unionField (S, f, E). The addition of $(p)_{\mathbf{1}}=($ the addition of $K) \upharpoonright\left(\right.$ the carrier of $\left.(p)_{\mathbf{1}}\right)$. The multiplication of $(p)_{\mathbf{1}}=($ the multiplication of $K) \upharpoonright\left(\right.$ the carrier of $\left.(p)_{1}\right) .1_{(p)_{1}}=1_{K}$ and $0_{K}=0_{(p)_{1}}$.
Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, and an ascending, non empty subset S of $\operatorname{ExtSet}(f, E)$. Now we state the propositions:
(54) $\quad F$ is a subfield of unionField (S, f, E). The theorem is a consequence of (53).
(55) unionField (S, f, E) is a subfield of E.

Proof: Set $K=$ unionField (S, f, E). The carrier of $K \subseteq$ the carrier of E. The addition of $K=$ (the addition of E) \upharpoonright (the carrier of K). The multiplication of $K=($ the multiplication of $E) \upharpoonright($ the carrier of $K)$. Set $p=$ the element of S. Consider U being an element of $\operatorname{SubFields}(E)$, g being a function from U into L such that $p=\langle U, g\rangle$ and there exists an extension K_{1} of F and there exists a function g_{1} from K_{1} into L such that $K_{1}=U$ and $g_{1}=g$ and g_{1} is monomorphic and f-extending. $(p)_{1}$ is a subfield of $E .1_{K}=1_{(p)_{1}} \cdot 0_{K}=0_{(p)_{1}} . \square$
Let F be a field, E be an extension of F, L be an F-monomorphic field, f be a monomorphism of F and L, and S be an ascending, non empty subset of $\operatorname{ExtSet}(f, E)$. Note that unionField (S, f, E) is F-extending.

The functor unionExt (S, f, E) yielding a function from unionField (S, f, E) into L is defined by
(Def. 23) for every element p of S, it $\left\lceil\left(\right.\right.$ the carrier of $\left.(p)_{\mathbf{1}}\right)=(p)_{\mathbf{2}}$.
Now we state the proposition:
(56) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, and an ascending, non empty subset S of $\operatorname{ExtSet}(f, E)$. Then unionExt (S, f, E) is monomorphic and f-extending. The theorem is a consequence of (51) and (53).
Let F be a field, E be an extension of F, L be an F-monomorphic field, f be a monomorphism of F and L, and S be an ascending, non empty subset of $\operatorname{ExtSet}(f, E)$. The functor sup S yielding an element of $\operatorname{ExtSet}(f, E)$ is defined by the term
(Def. 24) 〈unionField (S, f, E), unionExt $(S, f, E)\rangle$.
Now we state the propositions:
(57) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, an ascending, non empty subset S of $\operatorname{ExtSet}(f, E)$, and an element p of S. Then $p \leqslant \sup S$. The theorem is a consequence of (53).
(58) Let us consider a field F, an extension E of F, an F-algebraic element a of E, an F-monomorphic, algebraic closed field L, and a monomorphism f of F and L. Then there exists a function g from $\operatorname{FAdj}(F,\{a\})$ into L such that g is monomorphic and f-extending. The theorem is a consequence of (3) and (2).
(59) Let us consider a field F, an F-algebraic extension E of F, an F-monomorphic, algebraic closed field L, and a monomorphism f of F and L. Then there exists a function g from E into L such that g is monomorphic and f-extending. The theorem is a consequence of (47), (49), (48), (57), (45), (58), (10), and (1).
(60) Let us consider a field F, an extension E of F, an F-homomorphic, E-homomorphic field L, a homomorphism from F to L, and a homomorphism g from E to L. Suppose g is f-extending. Then $\operatorname{Im} f$ is a subfield of $\operatorname{Im} g$.
(61) Let us consider a field F, an algebraic closure A of F, an A-monomorphic, A-homomorphic field L, and a monomorphism g of A and L. Then $\operatorname{Im} g$ is algebraic closed.
Proof: Reconsider $f=g^{-1}$ as a function from $\operatorname{Im} g$ into A. f is additive, multiplicative, unity-preserving, and monomorphic.
(62) Let us consider a field F, an F-monomorphic, F-homomorphic field L, an algebraic closure A of F, and a monomorphism f of F and L. Suppose L is an algebraic closure of $\operatorname{Im} f$. Let us consider a function g from A into L. If g is monomorphic and f-extending, then g is isomorphism. The theorem is a consequence of (61), (60), and (33).
(63) Let us consider a field F, and algebraic closures A_{1}, A_{2} of F. Then A_{1} and A_{2} are isomorphic over F.
Proof: Reconsider $L=A_{2}$ as an F-monomorphic, F-homomorphic, algebraic closed field. Reconsider $f=\mathrm{id}_{F}$ as a monomorphism of F and L. Consider g being a function from A_{1} into L such that g is monomorphic and f-extending. The double loop structure of $F \approx F$. $\operatorname{Im} f=$ the double loop structure of F by [4, (7)]. L is an algebraic closure of $\operatorname{Im} f . g$ is isomorphism.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi $10.1007 / 978-3-319-20615-8 _17$.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. dol 10.1007/s10817-017-9440-6
[3] Serge Lang. Algebra. Springer Verlag, 2002 (Revised Third Edition).
[4] Christoph Schwarzweller. Field extensions and Kronecker's construction. Formalized Mathematics, 27(3):229-235, 2019. doi 10.2478/forma-2019-0022

Accepted December 27, 2022

