

Existence and Uniqueness of Algebraic Closures

Christoph Schwarzweller[©] Institute of Informatics University of Gdańsk Poland

Summary. This is the second part of a two-part article formalizing existence and uniqueness of algebraic closures, using the Mizar [2], [1] formalism. Our proof follows Artin's classical one as presented by Lang in [3]. In the first part we proved that for a given field F there exists a field extension E such that every non-constant polynomial $p \in F[X]$ has a root in E. Artin's proof applies Kronecker's construction to each polynomial $p \in F[X] \setminus F$ simultaneously. To do so we needed the polynomial ring $F[X_1, X_2, ...]$ with infinitely many variables, one for each polynomial $p \in F[X] \setminus F$. The desired field extension E then is $F[X_1, X_2, ...] \setminus I$, where I is a maximal ideal generated by all non-constant polynomials $p \in F[X]$. Note, that to show that I is maximal Zorn's lemma has to be applied.

In this second part this construction is iterated giving an infinite sequence of fields, whose union establishes a field extension A of F, in which every nonconstant polynomial $p \in A[X]$ has a root. The field of algebraic elements of Athen is an algebraic closure of F. To prove uniqueness of algebraic closures, e.g. that two algebraic closures of F are isomorphic over F, the technique of extending monomorphisms is applied: a monomorphism $F \longrightarrow A$, where A is an algebraic closure of F can be extended to a monomorphism $E \longrightarrow A$, where E is any algebraic extension of F. In case that E is algebraically closed this monomorphism is an isomorphism. Note that the existence of the extended monomorphism again relies on Zorn's lemma.

MSC: 12F05 68V20

Keywords: algebraic closures; polynomial rings with countably infinite number of variables; Emil Artin

MML identifier: FIELD_12, version: 8.1.12 5.72.1435

1. Preliminaries

Let L be a non empty double loop structure. One can verify that the double loop structure of L is non empty. Let L be a non trivial double loop structure. One can verify that the double loop structure of L is non trivial. Let L be a non degenerated double loop structure. One can verify that the double loop structure of L is non degenerated. Let L be an add-associative double loop structure. One can check that the double loop structure of L is add-associative.

Let L be a right zeroed double loop structure. Let us note that the double loop structure of L is right zeroed. Let L be a right complementable double loop structure. Observe that the double loop structure of L is right complementable. Let L be an Abelian double loop structure. Let us observe that the double loop structure of L is Abelian. Let L be an associative double loop structure. One can check that the double loop structure of L is associative.

Let L be a well unital, non empty double loop structure. Observe that the double loop structure of L is well unital. Let L be a left distributive, non empty double loop structure. One can check that the double loop structure of L is left distributive. Let L be a right distributive, non empty double loop structure. Observe that the double loop structure of L is right distributive. Let Lbe a commutative double loop structure. One can verify that the double loop structure of L is commutative.

Let L be an integral domain-like, non empty double loop structure. Let us note that the double loop structure of L is integral domain-like. Let L be an almost left invertible double loop structure. Observe that the double loop structure of L is almost left invertible. Now we state the proposition:

(1) Let us consider a field F. Then the double loop structure of $F \approx F$.

Let F be a field. Let us note that there exists an extension of F which is strict. Let L be an F-monomorphic field. Let us note that there exists an extension of L which is F-homomorphic and F-monomorphic and there exists an element of the carrier of PolyRing(F) which is monic and irreducible. Let F be a non algebraic closed field. Observe that there exists an element of the carrier of PolyRing(F) which is monic and non constant and has not roots. Now we state the propositions:

- (2) Let us consider a field F_1 , an F_1 -monomorphic, F_1 -homomorphic field F_2 , a monomorphism h of F_1 and F_2 , and an element p of the carrier of $\operatorname{PolyRing}(F_1)$. Then $(\operatorname{PolyHom}(h))(-p) = -(\operatorname{PolyHom}(h))(p)$.
- (3) Let us consider a field F_1 , an F_1 -monomorphic, F_1 -homomorphic field F_2 , a monomorphism h of F_1 and F_2 , and elements p, q of the carrier of $\operatorname{PolyRing}(F_1)$. If $p \mid q$, then $(\operatorname{PolyHom}(h))(p) \mid (\operatorname{PolyHom}(h))(q)$.

Let F_1 be a field, F_2 be an F_1 -monomorphic, F_1 -homomorphic field, h be a monomorphism of F_1 and F_2 , and p be a non constant element of the carrier of PolyRing (F_1) . Let us observe that (PolyHom(h))(p) is non constant as an element of the carrier of PolyRing (F_2) .

Let R be a GCD domain and a, b be elements of R. We say that a and b are relatively prime if and only if

(Def. 1) 1_R is a GCD of a and b.

Let us consider a field F and elements p, q of the carrier of PolyRing(F). Now we state the propositions:

- (4) p and q are relatively prime if and only if $gcd(p,q) = \mathbf{1}.F$.
- (5) If p and q are relatively prime, then p and q have no common roots.
- (6) Let us consider a field F, and an element p of the carrier of PolyRing(F). Then there exists an extension E of F and there exists an F-algebraic element a of E such that p = MinPoly(a, F) if and only if p is monic and irreducible.
- (7) Let us consider a field F, and an irreducible element p of the carrier of PolyRing(F). Then there exists an F-finite extension E of F such that
 - (i) $\deg(E, F) = \deg(p)$, and
 - (ii) p has a root in E.

The theorem is a consequence of (6).

- (8) Let us consider a field F, and a non constant element p of the carrier of PolyRing(F). Then there exists an F-finite extension E of F such that
 - (i) p has a root in E, and
 - (ii) $\deg(E, F) \leq \deg(p)$.

The theorem is a consequence of (7).

- (9) Let us consider a field F, an F-algebraic extension E of F, an E-extending extension K of F, and an element a of K. If a is E-algebraic, then a is F-algebraic.
- (10) Let us consider fields F_1 , F_2 , L, an extension E_1 of F_1 , a E_1 -extending extension K_1 of F_1 , a function h_1 from F_1 into L, a function h_2 from E_1 into L, and a function h_3 from K_1 into L. Suppose h_2 is h_1 -extending and h_3 is h_2 -extending. Then h_3 is h_1 -extending.

Let F be a field. Let us observe that every extension of F is F-monomorphic and F-homomorphic.

Let E be an extension of F. Let us note that there exists a field which is E-homomorphic, E-monomorphic, F-homomorphic, and F-monomorphic.

2. Sequences of Fields

A sequence is a function defined by

(Def. 2) dom $it = \mathbb{N}$.

Let us observe that every sequence is \mathbb{N} -defined.

Let f be a binary relation. We say that f is field-yielding if and only if

(Def. 3) for every object x such that $x \in \operatorname{rng} f$ holds x is a field.

Observe that there exists a sequence which is field-yielding and every function which is field-yielding is also 1-sorted yielding.

Let f be a field-yielding sequence and i be an element of N. One can check that the functor f(i) yields a field. Let i be a natural number. Observe that the functor f(i) yields a field.

The scheme *RecExField* deals with a field \mathcal{A} and a ternary predicate \mathcal{P} and states that

- (Sch. 1) There exists a field-yielding sequence f such that $f(0) = \mathcal{A}$ and for every natural number n, $\mathcal{P}[n, f(n), f(n+1)]$ provided
 - for every natural number n and for every field x, there exists a field y such that $\mathcal{P}[n, x, y]$.

Let f be a field-yielding sequence. We say that f is ascending if and only if

(Def. 4) for every element i of N, f(i + 1) is an extension of f(i).
Note that there exists a field-yielding sequence which is ascending.
Let f be a field-yielding sequence. The support of f yielding a non empty set is defined by the term

- (Def. 5) \bigcup the set of all the carrier of f(i) where i is an element of \mathbb{N} . Now we state the propositions:
 - (11) Let us consider an ascending, field-yielding sequence f, elements i, j of \mathbb{N} , and an element a of f(i). If $i \leq j$, then $a \in$ the carrier of f(j). PROOF: Define $\mathcal{P}[\text{natural number}] \equiv$ there exists an element k of \mathbb{N} such that $k = i + \$_1$ and $a \in$ the carrier of f(k). For every natural number k, $\mathcal{P}[k]$. Consider n being a natural number such that i + n = j. \Box
 - (12) Let us consider an ascending, field-yielding sequence f, and elements i, j of \mathbb{N} . If $i \leq j$, then f(j) is an extension of f(i). PROOF: Define $\mathcal{P}[$ natural number $] \equiv$ there exists an element k of \mathbb{N} such that $k = i + \$_1$ and f(k) is an extension of f(i). $\mathcal{P}[0]$. For every natural number k, $\mathcal{P}[k]$. Consider n being a natural number such that i + n = j. \Box

- (13) Let us consider an ascending, field-yielding sequence f, elements i, j of \mathbb{N} , elements x_2 , y_2 of f(i), and elements x_3 , y_3 of f(j). Suppose $x_2 = x_3$ and $y_2 = y_3$. Then
 - (i) $x_2 + y_2 = x_3 + y_3$, and
 - (ii) $x_2 \cdot y_2 = x_3 \cdot y_3$.

The theorem is a consequence of (12).

Let f be an ascending, field-yielding sequence. The functor $\operatorname{addseq}(f)$ yielding a binary operation on the support of f is defined by

(Def. 6) for every elements a, b of the support of f, there exists an element i of \mathbb{N} and there exist elements x, y of f(i) such that x = a and y = b and it(a, b) = x + y.

The functor multseq(f) yielding a binary operation on the support of f is defined by

(Def. 7) for every elements a, b of the support of f, there exists an element i of \mathbb{N} and there exist elements x, y of f(i) such that x = a and y = b and $it(a, b) = x \cdot y$.

The functor SeqField(f) yielding a strict double loop structure is defined by

(Def. 8) the carrier of it = the support of f and the addition of it = addseq(f)and the multiplication of it = multseq(f) and the one of it = $1_{f(0)}$ and the zero of it = $0_{f(0)}$.

Now we state the propositions:

- (14) Let us consider an ascending, field-yielding sequence f, and an element i of \mathbb{N} . Then
 - (i) $1_{\text{SeqField}(f)} = 1_{f(i)}$, and
 - (ii) $0_{\text{SeqField}(f)} = 0_{f(i)}$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{there exists an element } k \text{ of } \mathbb{N} \text{ such that } k = \$_1 \text{ and } 1_{f(k)} = 1_{f(0)} \text{ and } 0_{f(k)} = 0_{f(0)}.$ For every natural number $k, \mathcal{P}[k]. \square$

(15) Let us consider an ascending, field-yielding sequence f, elements a, b of SeqField(f), an element i of \mathbb{N} , and elements x, y of f(i). If x = a and y = b, then a + b = x + y and $a \cdot b = x \cdot y$. The theorem is a consequence of (13).

Let f be an ascending, field-yielding sequence. Observe that SeqField(f) is non degenerated and SeqField(f) is Abelian, add-associative, right zeroed, and right complementable and SeqField(f) is commutative, associative, well unital, distributive, and almost left invertible. Now we state the propositions:

- (16) Let us consider an ascending, field-yielding sequence f, and an element i of \mathbb{N} . Then f(i) is a subfield of SeqField(f). PROOF: Set F = f(i). Set K = SeqField(f). The addition of F =(the addition of K) \upharpoonright (the carrier of F). The multiplication of F =(the multiplication of K) \upharpoonright (the carrier of F). $1_F = 1_K$ and $0_F = 0_K$. \Box
- (17) Let us consider a field E, and an ascending, field-yielding sequence f. Suppose for every element i of \mathbb{N} , f(i) is a subfield of E. Then SeqField(f) is a subfield of E. PROOF: Set F = SeqField(f). The carrier of $F \subseteq$ the carrier of K. The addition of $F = (\text{the addition of } K) \upharpoonright (\text{the carrier of } F)$. The multipli-

cation of F = (the multiplication of $K) \upharpoonright ($ the carrier of F). \Box

(18) Let us consider an ascending, field-yielding sequence f, and a finite subset X of SeqField(f). Then there exists an element i of \mathbb{N} such that $X \subseteq$ the carrier of f(i). PROOF: Define $\mathcal{P}[$ natural number $] \equiv$ for every finite subset X of SeqField(f) such that $\overline{X} = \$_1$ there exists an element i of \mathbb{N} such that $X \subseteq$ the carrier of f(i). $\mathcal{P}[0]$. $\mathcal{P}[1]$. For every natural number k, $\mathcal{P}[k]$. Consider n being

a natural number such that $\overline{X} = n$. Consider *i* being an element of \mathbb{N} such that $X \subseteq$ the carrier of f(i). \Box

3. MAXIMAL ALGEBRAIC AND ALGEBRAIC CLOSED FIELDS

Let F be a field. We say that F is maximal algebraic if and only if

(Def. 9) for every *F*-algebraic extension *E* of *F*, $E \approx F$.

Let us consider a field F. Now we state the propositions:

- (19) F is maximal algebraic if and only if F is algebraic closed. The theorem is a consequence of (7).
- (20) F is algebraic closed if and only if every non constant polynomial over F has roots.
- (21) F is algebraic closed if and only if for every irreducible element p of the carrier of PolyRing(F), deg(p) = 1.
- (22) F is algebraic closed if and only if for every non constant polynomial p over F, p splits in F.
- (23) F is algebraic closed if and only if every non constant, monic polynomial over F is a product of linear polynomials of F.
- (24) F is algebraic closed if and only if for every elements p, q of the carrier of PolyRing(F), p and q are relatively prime iff p and q have no common roots. The theorem is a consequence of (4) and (5).

- (25) F is algebraic closed if and only if for every *F*-algebraic extension *E* of $F, E \approx F$. The theorem is a consequence of (19).
- (26) F is algebraic closed if and only if for every F-finite extension E of F, $E \approx F$. The theorem is a consequence of (19).

Let us note that every field which is algebraic closed is also infinite.

4. EXISTENCE OF ALGEBRAIC CLOSURES

Let F be a field. A closure sequence of F is an ascending, field-yielding sequence defined by

- (Def. 10) it(0) = F and for every element i of \mathbb{N} and for every field K and for every extension E of K such that K = it(i) and E = it(i+1) for every non constant element p of the carrier of PolyRing(K), p has a root in E. Now we state the proposition:
 - (27) Let us consider an ascending, field-yielding sequence f, and a polynomial p over SeqField(f). Then there exists an element i of \mathbb{N} such that p is a polynomial over f(i). The theorem is a consequence of (18) and (16).

Let F be a field and f be a closure sequence of F. Let us observe that SeqField(f) is F-extending and SeqField(f) is algebraic closed.

Now we state the proposition:

(28) Let us consider a field F. Then there exists an extension E of F such that E is algebraic closed.

Let F be a field. An algebraic closure of F is an extension of F defined by

(Def. 11) *it* is *F*-algebraic and algebraic closed.

Note that every algebraic closure of F is F-algebraic and algebraic closed and there exists an algebraic closed field which is F-homomorphic and Fmonomorphic. Now we state the propositions:

- (29) Let us consider a field F. Then there exists a field E such that E is an algebraic closure of F.
- (30) Let us consider a field F, and an F-algebraic extension E of F. Then there exists an algebraic closure A of F such that E is a subfield of A.

Let F be a field and E be an F-algebraic extension of F. Let us observe that there exists an algebraic closure of F which is E-extending.

Now we state the propositions:

- (31) Let us consider a field F, and an F-algebraic extension E of F. Then every algebraic closure of E is an algebraic closure of F.
- (32) Let us consider a field F, an extension E of F, and an algebraic closure A of F. If A is E-extending, then A is an algebraic closure of E.

(33) Let us consider a field F, and algebraic closures A_1 , A_2 of F. If A_1 is A_2 -extending, then $A_2 \approx A_1$. The theorem is a consequence of (25).

5. Some More Preliminaries

Let R be a ring and S be an R-homomorphic ring. Observe that there exists a ring which is S-homomorphic and R-homomorphic.

Let T be an S-homomorphic ring, f be an additive function from R into S, and g be an additive function from S into T. Let us note that $g \cdot f$ is additive as a function from R into T.

Let f be a multiplicative function from R into S and g be a multiplicative function from S into T. Let us note that $g \cdot f$ is multiplicative as a function from R into T.

Let f be a unity-preserving function from R into S and g be a unitypreserving function from S into T. Let us note that $g \cdot f$ is unity-preserving as a function from R into T. Now we state the propositions:

- (34) Let us consider a field F, and an extension E of F. Then id_F is a monomorphism of F and E. PROOF: Reconsider $f = \mathrm{id}_F$ as a function from F into E. f is additive, multiplicative, unity-preserving, and monomorphic. \Box
- (35) Let us consider a ring R, an R-homomorphic ring S, an S-homomorphic, R-homomorphic ring T, an additive function f from R into S, and an additive function g from S into T. Then PolyHom $(g \cdot f) = PolyHom(g) \cdot PolyHom(f)$.
- (36) Let us consider a ring R, an R-homomorphic ring S, an R-homomorphic, S-homomorphic ring T, an additive function f from R into S, and an additive function g from S into T. Suppose $g \cdot f = \mathrm{id}_R$. Then $\mathrm{PolyHom}(g \cdot f) = \mathrm{id}_{\mathrm{PolyRing}(R)}$. The theorem is a consequence of (35).
- (37) Let us consider fields F_1 , F_2 , and an extension E of F_1 . If $F_1 \approx F_2$, then E is an extension of F_2 .
- (38) Let us consider fields F_1 , F_2 . Suppose $F_1 \approx F_2$. Then
 - (i) $\mathbf{0}.F_1 = \mathbf{0}.F_2$, and
 - (ii) $\mathbf{1}.F_1 = \mathbf{1}.F_2$.
- (39) Let us consider fields F_1 , F_2 , and a polynomial p over F_1 . If $F_1 \approx F_2$, then p is a polynomial over F_2 .
- (40) Let us consider fields F_1 , F_2 , and a non zero polynomial p over F_1 . If $F_1 \approx F_2$, then p is a non zero polynomial over F_2 . The theorem is a consequence of (39) and (38).

- (41) Let us consider fields F_1 , F_2 , a polynomial p over F_1 , a polynomial q over F_2 , an element a of F_1 , and an element b of F_2 . Suppose $F_1 \approx F_2$ and p = q and a = b. Then eval(p, a) = eval(q, b).
- (42) Let us consider fields F_1 , F_2 , an extension E_1 of F_1 , an extension E_2 of F_2 , a polynomial p over F_1 , a polynomial q over F_2 , an element a of E_1 , and an element b of E_2 . Suppose $F_1 \approx F_2$ and $E_1 \approx E_2$ and p = q and a = b. Then ExtEval(p, a) = ExtEval(q, b). The theorem is a consequence of (41).
- (43) Let us consider fields F_1 , F_2 , and an F_{Γ} algebraic extension E of F_1 . If $F_1 \approx F_2$, then E is an F_2 -algebraic extension of F_2 . The theorem is a consequence of (37), (40), and (42).
- (44) Let us consider fields F_1 , F_2 , and an algebraic closure E of F_1 . If $F_1 \approx F_2$, then E is an algebraic closure of F_2 . The theorem is a consequence of (43).

Let X be a set. We say that X is field-membered if and only if

(Def. 12) for every object x such that $x \in X$ holds x is a field.

Observe that there exists a set which is field-membered and non empty.

Let X be a non empty, field-membered set.

One can check that an element of X is a field. Let F be a field. The functor SubFields(F) yielding a set is defined by

(Def. 13) for every object $o, o \in it$ iff there exists a strict field K such that o = Kand K is a subfield of F.

One can check that SubFields(F) is non empty and field-membered. Now we state the proposition:

(45) Let us consider fields F, K. Then $K \in \text{SubFields}(F)$ if and only if K is a strict subfield of F.

6. Uniqueness of Algebraic Closures

Let F be a field, E be an extension of F, L be an F-monomorphic field, and f be a monomorphism of F and L. The functor ExtSet(f, E) yielding a non empty set is defined by the term

(Def. 14) $\{\langle K, g \rangle$, where K is an element of SubFields(E), g is a function from K into L : there exists an extension K_1 of F and there exists a function g_1 from K_1 into L such that $K_1 = K$ and $g_1 = g$ and g_1 is monomorphic and f-extending}.

Note that every element of ExtSet(f, E) is pair.

Let p be an element of ExtSet(f, E). One can verify that the functor $(p)_1$ yields a strict extension of F. One can verify that the functor $(p)_2$ yields a function from $(p)_1$ into L. Now we state the proposition:

(46) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, a strict extension K of F, and a function g from K into L. Suppose g is monomorphic. Then $\langle K, g \rangle \in \text{ExtSet}(f, E)$ if and only if E is an extension of K and F is a subfield of K and g is f-extending. The theorem is a consequence of (45).

Let F be a field, E be an extension of F, L be an F-monomorphic field, f be a monomorphism of F and L, and p, q be elements of ExtSet(f, E). We say that $p \leq q$ if and only if

(Def. 15) $(q)_1$ is an extension of $(p)_1$ and for every extension K of $(p)_1$ and for every function g from K into L such that $K = (q)_1$ and $g = (q)_2$ holds gis $(p)_2$ -extending.

Let S be a non empty subset of ExtSet(f, E). We say that S is ascending if and only if

(Def. 16) for every elements p, q of $S, p \leq q$ or $q \leq p$.

One can check that there exists a non empty subset of ExtSet(f, E) which is ascending. Now we state the propositions:

- (47) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, and an element p of ExtSet(f, E). Then $p \leq p$.
- (48) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, and elements p, q of ExtSet(f, E). If $p \leq q \leq p$, then p = q.
- (49) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, and elements p, q, r of ExtSet(f, E). If $p \leq q \leq r$, then $p \leq r$.

Let F be a field, E be an extension of F, L be an F-monomorphic field, f be a monomorphism of F and L, and S be a non empty subset of ExtSet(f, E). The functor unionCarrier(S, f, E) yielding a non empty set is defined by the term

(Def. 17) \bigcup the set of all the carrier of $(p)_1$ where p is an element of S.

Let S be an ascending, non empty subset of ExtSet(f, E). The functors: unionAdd(S, f, E) and unionMult(S, f, E) yielding binary operations on union Carrier(S, f, E) are defined by conditions

(Def. 18) for every elements a, b of unionCarrier(S, f, E), there exists an element p of S and there exist elements x, y of $(p)_1$ such that x = a and y = b and

unionAdd(S, f, E)(a, b) = x + y,

(Def. 19) for every elements a, b of unionCarrier(S, f, E), there exists an element p of S and there exist elements x, y of $(p)_1$ such that x = a and y = b and unionMult $(S, f, E)(a, b) = x \cdot y$,

respectively. The functors: unionOne(S, f, E) and unionZero(S, f, E) yielding elements of unionCarrier(S, f, E) are defined by conditions

- (Def. 20) there exists an element p of S such that unionOne $(S, f, E) = 1_{(p)_1}$,
- (Def. 21) there exists an element p of S such that unionZero $(S, f, E) = 0_{(p)_1}$, respectively. The functor unionField(S, f, E) yielding a strict double loop structure is defined by
- (Def. 22) the carrier of it = unionCarrier(S, f, E) and the addition of it = union Add(S, f, E) and the multiplication of it = unionMult(S, f, E) and the one of it = unionOne(S, f, E) and the zero of it = unionZero(S, f, E).

Now we state the propositions:

- (50) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, a non empty subset S of ExtSet(f, E), elements p, q of S, and an element a of $(p)_1$. If $p \leq q$, then $a \in$ the carrier of $(q)_1$.
- (51) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, an ascending, non empty subset S of ExtSet(f, E), and an element p of S. Then
 - (i) $1_{\text{unionField}(S,f,E)} = 1_{(p)_1}$, and
 - (ii) $0_{\text{unionField}(S,f,E)} = 0_{(p)_1}$.
- (52) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, an ascending, non empty subset S of ExtSet(f, E), elements a, b of unionField(S, f, E), an element p of S, and elements x, y of $(p)_1$. If x = a and y = b, then a+b = x+y and $a \cdot b = x \cdot y$.

Let F be a field, E be an extension of F, L be an F-monomorphic field, f be a monomorphism of F and L, and S be an ascending, non empty subset of ExtSet(f, E). Let us observe that unionField(S, f, E) is non degenerated and unionField(S, f, E) is Abelian, add-associative, right zeroed, and right complementable and unionField(S, f, E) is commutative, associative, well unital, distributive, and almost left invertible. Now we state the proposition:

(53) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, an ascending, non empty subset S of ExtSet(f, E), and an element p of S. Then $(p)_1$ is a subfield of unionField(S, f, E). PROOF: Set K = unionField(S, f, E). The addition of $(p)_1 =$ (the addition of $K) \upharpoonright$ (the carrier of $(p)_1$). The multiplication of $(p)_1 =$ (the multiplication of $K) \upharpoonright$ (the carrier of $(p)_1$). $1_{(p)_1} = 1_K$ and $0_K = 0_{(p)_1}$. \Box

Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, and an ascending, non empty subset S of ExtSet(f, E). Now we state the propositions:

- (54) F is a subfield of unionField(S, f, E). The theorem is a consequence of (53).
- (55) unionField(S, f, E) is a subfield of E.

PROOF: Set K = unionField(S, f, E). The carrier of $K \subseteq$ the carrier of E. The addition of K = (the addition of $E) \upharpoonright$ (the carrier of K). The multiplication of K = (the multiplication of $E) \upharpoonright$ (the carrier of K). Set p = the element of S. Consider U being an element of SubFields(E), g being a function from U into L such that $p = \langle U, g \rangle$ and there exists an extension K_1 of F and there exists a function g_1 from K_1 into L such that $K_1 = U$ and $g_1 = g$ and g_1 is monomorphic and f-extending. $(p)_1$ is a subfield of E. $1_K = 1_{(p)_1}$. $0_K = 0_{(p)_1}$. \Box

Let F be a field, E be an extension of F, L be an F-monomorphic field, f be a monomorphism of F and L, and S be an ascending, non empty subset of ExtSet(f, E). Note that unionField(S, f, E) is F-extending.

The functor union $\operatorname{Ext}(S, f, E)$ yielding a function from union $\operatorname{Field}(S, f, E)$ into L is defined by

(Def. 23) for every element p of S, $it \upharpoonright (the carrier of <math>(p)_1) = (p)_2$.

Now we state the proposition:

(56) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, and an ascending, non empty subset S of ExtSet(f, E). Then unionExt(S, f, E) is monomorphic and f-extending. The theorem is a consequence of (51) and (53).

Let F be a field, E be an extension of F, L be an F-monomorphic field, f be a monomorphism of F and L, and S be an ascending, non empty subset of ExtSet(f, E). The functor sup S yielding an element of ExtSet(f, E) is defined by the term

(Def. 24) $\langle \text{unionField}(S, f, E), \text{unionExt}(S, f, E) \rangle$.

Now we state the propositions:

(57) Let us consider a field F, an extension E of F, an F-monomorphic field L, a monomorphism f of F and L, an ascending, non empty subset S of ExtSet(f, E), and an element p of S. Then $p \leq \sup S$. The theorem is a consequence of (53).

- (58) Let us consider a field F, an extension E of F, an F-algebraic element a of E, an F-monomorphic, algebraic closed field L, and a monomorphism f of F and L. Then there exists a function g from FAdj $(F, \{a\})$ into L such that g is monomorphic and f-extending. The theorem is a consequence of (3) and (2).
- (59) Let us consider a field F, an F-algebraic extension E of F, an F-monomorphic, algebraic closed field L, and a monomorphism f of F and L. Then there exists a function g from E into L such that g is monomorphic and f-extending. The theorem is a consequence of (47), (49), (48), (57), (45), (58), (10), and (1).
- (60) Let us consider a field F, an extension E of F, an F-homomorphic, E-homomorphic field L, a homomorphism f from F to L, and a homomorphism g from E to L. Suppose g is f-extending. Then Im f is a subfield of Im g.
- (61) Let us consider a field F, an algebraic closure A of F, an A-monomorphic, A-homomorphic field L, and a monomorphism g of A and L. Then $\operatorname{Im} g$ is algebraic closed.

PROOF: Reconsider $f = g^{-1}$ as a function from Im g into A. f is additive, multiplicative, unity-preserving, and monomorphic. \Box

- (62) Let us consider a field F, an F-monomorphic, F-homomorphic field L, an algebraic closure A of F, and a monomorphism f of F and L. Suppose L is an algebraic closure of Im f. Let us consider a function g from A into L. If g is monomorphic and f-extending, then g is isomorphism. The theorem is a consequence of (61), (60), and (33).
- (63) Let us consider a field F, and algebraic closures A_1 , A_2 of F. Then A_1 and A_2 are isomorphic over F. PROOF: Reconsider $L = A_2$ as an F-monomorphic, F-homomorphic, algebraic closed field. Reconsider $f = \mathrm{id}_F$ as a monomorphism of F and L. Consider g being a function from A_1 into L such that g is monomorphic and f-extending. The double loop structure of $F \approx F$. Im f = the double loop structure of F by [4, (7)]. L is an algebraic closure of Im f. g is isomorphism. \Box

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Čarette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.

- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Serge Lang. Algebra. Springer Verlag, 2002 (Revised Third Edition).
- [4] Christoph Schwarzweller. Field extensions and Kronecker's construction. Formalized Mathematics, 27(3):229–235, 2019. doi:10.2478/forma-2019-0022.

Accepted December 27, 2022