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Summary. This is the second part of a two-part article formalizing exi-
stence and uniqueness of algebraic closures, using the Mizar [2], [1] formalism.
Our proof follows Artin’s classical one as presented by Lang in [3]. In the first
part we proved that for a given field F there exists a field extension E such
that every non-constant polynomial p ∈ F [X] has a root in E. Artin’s proof ap-
plies Kronecker’s construction to each polynomial p ∈ F [X]\F simultaneously.
To do so we needed the polynomial ring F [X1, X2, ...] with infinitely many va-
riables, one for each polynomal p ∈ F [X]\F . The desired field extension E then
is F [X1, X2, ...]\I, where I is a maximal ideal generated by all non-constant po-
lynomials p ∈ F [X]. Note, that to show that I is maximal Zorn’s lemma has to
be applied.

In this second part this construction is iterated giving an infinite sequence
of fields, whose union establishes a field extension A of F , in which every non-
constant polynomial p ∈ A[X] has a root. The field of algebraic elements of A
then is an algebraic closure of F . To prove uniqueness of algebraic closures, e.g.
that two algebraic closures of F are isomorphic over F , the technique of extending
monomorphisms is applied: a monomorphism F −→ A, where A is an algebraic
closure of F can be extended to a monomorphism E −→ A, where E is any
algebraic extension of F . In case that E is algebraically closed this monomorphism
is an isomorphism. Note that the existence of the extended monomorphism again
relies on Zorn’s lemma.
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1. Preliminaries

Let L be a non empty double loop structure. One can verify that the double
loop structure of L is non empty. Let L be a non trivial double loop structure.
One can verify that the double loop structure of L is non trivial. Let L be a non
degenerated double loop structure. One can verify that the double loop structure
of L is non degenerated. Let L be an add-associative double loop structure. One
can check that the double loop structure of L is add-associative.

Let L be a right zeroed double loop structure. Let us note that the double
loop structure of L is right zeroed. Let L be a right complementable double loop
structure. Observe that the double loop structure of L is right complementable.
Let L be an Abelian double loop structure. Let us observe that the double loop
structure of L is Abelian. Let L be an associative double loop structure. One
can check that the double loop structure of L is associative.

Let L be a well unital, non empty double loop structure. Observe that the do-
uble loop structure of L is well unital. Let L be a left distributive, non empty
double loop structure. One can check that the double loop structure of L is
left distributive. Let L be a right distributive, non empty double loop struc-
ture. Observe that the double loop structure of L is right distributive. Let L
be a commutative double loop structure. One can verify that the double loop
structure of L is commutative.

Let L be an integral domain-like, non empty double loop structure. Let
us note that the double loop structure of L is integral domain-like. Let L be
an almost left invertible double loop structure. Observe that the double loop
structure of L is almost left invertible. Now we state the proposition:

(1) Let us consider a field F . Then the double loop structure of F ≈ F .

Let F be a field. Let us note that there exists an extension of F which is strict.
Let L be an F -monomorphic field. Let us note that there exists an extension
of L which is F -homomorphic and F -monomorphic and there exists an element
of the carrier of PolyRing(F ) which is monic and irreducible. Let F be a non
algebraic closed field. Observe that there exists an element of the carrier of
PolyRing(F ) which is monic and non constant and has not roots. Now we state
the propositions:

(2) Let us consider a field F1, an F1-monomorphic, F1-homomorphic field
F2, a monomorphism h of F1 and F2, and an element p of the carrier of
PolyRing(F1). Then (PolyHom(h))(−p) = −(PolyHom(h))(p).

(3) Let us consider a field F1, an F1-monomorphic, F1-homomorphic field
F2, a monomorphism h of F1 and F2, and elements p, q of the carrier of
PolyRing(F1). If p | q, then (PolyHom(h))(p) | (PolyHom(h))(q).
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Let F1 be a field, F2 be an F1-monomorphic, F1-homomorphic field, h be
a monomorphism of F1 and F2, and p be a non constant element of the car-
rier of PolyRing(F1). Let us observe that (PolyHom(h))(p) is non constant as
an element of the carrier of PolyRing(F2).

Let R be a GCD domain and a, b be elements of R. We say that a and b are
relatively prime if and only if

(Def. 1) 1R is a GCD of a and b.

Let us consider a field F and elements p, q of the carrier of PolyRing(F ).
Now we state the propositions:

(4) p and q are relatively prime if and only if gcd(p, q) = 1.F .

(5) If p and q are relatively prime, then p and q have no common roots.

(6) Let us consider a field F , and an element p of the carrier of PolyRing(F ).
Then there exists an extension E of F and there exists an F-algebraic
element a of E such that p = MinPoly(a, F ) if and only if p is monic and
irreducible.

(7) Let us consider a field F , and an irreducible element p of the carrier of
PolyRing(F ). Then there exists an F -finite extension E of F such that

(i) deg(E,F ) = deg(p), and

(ii) p has a root in E.

The theorem is a consequence of (6).

(8) Let us consider a field F , and a non constant element p of the carrier of
PolyRing(F ). Then there exists an F -finite extension E of F such that

(i) p has a root in E, and

(ii) deg(E,F ) ¬ deg(p).

The theorem is a consequence of (7).

(9) Let us consider a field F , an F-algebraic extension E of F , an E-extending
extension K of F , and an element a of K. If a is E-algebraic, then a is
F-algebraic.

(10) Let us consider fields F1, F2, L, an extension E1 of F1, a E1-extending
extension K1 of F1, a function h1 from F1 into L, a function h2 from E1
into L, and a function h3 from K1 into L. Suppose h2 is h1-extending and
h3 is h2-extending. Then h3 is h1-extending.

Let F be a field. Let us observe that every extension of F is F -monomorphic
and F -homomorphic.

Let E be an extension of F . Let us note that there exists a field which is
E-homomorphic, E-monomorphic, F -homomorphic, and F -monomorphic.
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2. Sequences of Fields

A sequence is a function defined by

(Def. 2) dom it = N.

Let us observe that every sequence is N-defined.
Let f be a binary relation. We say that f is field-yielding if and only if

(Def. 3) for every object x such that x ∈ rng f holds x is a field.

Observe that there exists a sequence which is field-yielding and every func-
tion which is field-yielding is also 1-sorted yielding.

Let f be a field-yielding sequence and i be an element of N. One can check
that the functor f(i) yields a field. Let i be a natural number. Observe that the
functor f(i) yields a field.

The scheme RecExField deals with a field A and a ternary predicate P and
states that

(Sch. 1) There exists a field-yielding sequence f such that f(0) = A and for every
natural number n, P[n, f(n), f(n+ 1)]

provided

• for every natural number n and for every field x, there exists a field y such
that P[n, x, y].

Let f be a field-yielding sequence. We say that f is ascending if and only if

(Def. 4) for every element i of N, f(i+ 1) is an extension of f(i).

Note that there exists a field-yielding sequence which is ascending.
Let f be a field-yielding sequence. The support of f yielding a non empty

set is defined by the term

(Def. 5)
⋃

the set of all the carrier of f(i) where i is an element of N.

Now we state the propositions:

(11) Let us consider an ascending, field-yielding sequence f , elements i, j of
N, and an element a of f(i). If i ¬ j, then a ∈ the carrier of f(j).
Proof: Define P[natural number] ≡ there exists an element k of N such
that k = i + $1 and a ∈ the carrier of f(k). For every natural number k,
P[k]. Consider n being a natural number such that i+ n = j. �

(12) Let us consider an ascending, field-yielding sequence f , and elements i,
j of N. If i ¬ j, then f(j) is an extension of f(i).
Proof: Define P[natural number] ≡ there exists an element k of N such
that k = i + $1 and f(k) is an extension of f(i). P[0]. For every natural
number k, P[k]. Consider n being a natural number such that i + n = j.
�
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(13) Let us consider an ascending, field-yielding sequence f , elements i, j of
N, elements x2, y2 of f(i), and elements x3, y3 of f(j). Suppose x2 = x3
and y2 = y3. Then

(i) x2 + y2 = x3 + y3, and

(ii) x2 · y2 = x3 · y3.

The theorem is a consequence of (12).

Let f be an ascending, field-yielding sequence. The functor addseq(f) yiel-
ding a binary operation on the support of f is defined by

(Def. 6) for every elements a, b of the support of f , there exists an element i of
N and there exist elements x, y of f(i) such that x = a and y = b and
it(a, b) = x+ y.

The functor multseq(f) yielding a binary operation on the support of f is
defined by

(Def. 7) for every elements a, b of the support of f , there exists an element i of
N and there exist elements x, y of f(i) such that x = a and y = b and
it(a, b) = x · y.

The functor SeqField(f) yielding a strict double loop structure is defined by

(Def. 8) the carrier of it = the support of f and the addition of it = addseq(f)
and the multiplication of it = multseq(f) and the one of it = 1f(0) and
the zero of it = 0f(0).

Now we state the propositions:

(14) Let us consider an ascending, field-yielding sequence f , and an element
i of N. Then

(i) 1SeqField(f) = 1f(i), and

(ii) 0SeqField(f) = 0f(i).

Proof: Define P[natural number] ≡ there exists an element k of N such
that k = $1 and 1f(k) = 1f(0) and 0f(k) = 0f(0). For every natural number
k, P[k]. �

(15) Let us consider an ascending, field-yielding sequence f , elements a, b of
SeqField(f), an element i of N, and elements x, y of f(i). If x = a and
y = b, then a+ b = x+ y and a · b = x · y. The theorem is a consequence
of (13).

Let f be an ascending, field-yielding sequence. Observe that SeqField(f) is
non degenerated and SeqField(f) is Abelian, add-associative, right zeroed, and
right complementable and SeqField(f) is commutative, associative, well unital,
distributive, and almost left invertible. Now we state the propositions:
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(16) Let us consider an ascending, field-yielding sequence f , and an element
i of N. Then f(i) is a subfield of SeqField(f).
Proof: Set F = f(i). Set K = SeqField(f). The addition of F =
(the addition of K) � (the carrier of F ). The multiplication of F =
(the multiplication of K) � (the carrier of F ). 1F = 1K and 0F = 0K . �

(17) Let us consider a field E, and an ascending, field-yielding sequence f .
Suppose for every element i of N, f(i) is a subfield of E. Then SeqField(f)
is a subfield of E.
Proof: Set F = SeqField(f). The carrier of F ⊆ the carrier of K.
The addition of F = (the addition ofK) � (the carrier of F ). The multipli-
cation of F = (the multiplication of K) � (the carrier of F ). �

(18) Let us consider an ascending, field-yielding sequence f , and a finite
subset X of SeqField(f). Then there exists an element i of N such that
X ⊆ the carrier of f(i).
Proof: Define P[natural number]≡for every finite subsetX of SeqField(f)
such that X = $1 there exists an element i of N such that X ⊆ the carrier
of f(i). P[0]. P[1]. For every natural number k, P[k]. Consider n being
a natural number such that X = n. Consider i being an element of N such
that X ⊆ the carrier of f(i). �

3. Maximal Algebraic and Algebraic Closed Fields

Let F be a field. We say that F is maximal algebraic if and only if

(Def. 9) for every F-algebraic extension E of F , E ≈ F .

Let us consider a field F . Now we state the propositions:

(19) F is maximal algebraic if and only if F is algebraic closed. The theorem
is a consequence of (7).

(20) F is algebraic closed if and only if every non constant polynomial over
F has roots.

(21) F is algebraic closed if and only if for every irreducible element p of
the carrier of PolyRing(F ), deg(p) = 1.

(22) F is algebraic closed if and only if for every non constant polynomial p
over F , p splits in F .

(23) F is algebraic closed if and only if every non constant, monic polynomial
over F is a product of linear polynomials of F .

(24) F is algebraic closed if and only if for every elements p, q of the carrier
of PolyRing(F ), p and q are relatively prime iff p and q have no common
roots. The theorem is a consequence of (4) and (5).
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(25) F is algebraic closed if and only if for every F-algebraic extension E of
F , E ≈ F . The theorem is a consequence of (19).

(26) F is algebraic closed if and only if for every F -finite extension E of F ,
E ≈ F . The theorem is a consequence of (19).

Let us note that every field which is algebraic closed is also infinite.

4. Existence of Algebraic Closures

Let F be a field. A closure sequence of F is an ascending, field-yielding
sequence defined by

(Def. 10) it(0) = F and for every element i of N and for every field K and for
every extension E of K such that K = it(i) and E = it(i + 1) for every
non constant element p of the carrier of PolyRing(K), p has a root in E.

Now we state the proposition:

(27) Let us consider an ascending, field-yielding sequence f , and a polynomial
p over SeqField(f). Then there exists an element i of N such that p is
a polynomial over f(i). The theorem is a consequence of (18) and (16).

Let F be a field and f be a closure sequence of F . Let us observe that
SeqField(f) is F -extending and SeqField(f) is algebraic closed.

Now we state the proposition:

(28) Let us consider a field F . Then there exists an extension E of F such
that E is algebraic closed.

Let F be a field. An algebraic closure of F is an extension of F defined by

(Def. 11) it is F-algebraic and algebraic closed.

Note that every algebraic closure of F is F-algebraic and algebraic closed
and there exists an algebraic closed field which is F -homomorphic and F -
monomorphic. Now we state the propositions:

(29) Let us consider a field F . Then there exists a field E such that E is
an algebraic closure of F .

(30) Let us consider a field F , and an F-algebraic extension E of F . Then
there exists an algebraic closure A of F such that E is a subfield of A.

Let F be a field and E be an F-algebraic extension of F . Let us observe that
there exists an algebraic closure of F which is E-extending.

Now we state the propositions:

(31) Let us consider a field F , and an F-algebraic extension E of F . Then
every algebraic closure of E is an algebraic closure of F .

(32) Let us consider a field F , an extension E of F , and an algebraic closure
A of F . If A is E-extending, then A is an algebraic closure of E.
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(33) Let us consider a field F , and algebraic closures A1, A2 of F . If A1 is
A2-extending, then A2 ≈ A1. The theorem is a consequence of (25).

5. Some More Preliminaries

Let R be a ring and S be an R-homomorphic ring. Observe that there exists
a ring which is S-homomorphic and R-homomorphic.

Let T be an S-homomorphic ring, f be an additive function from R into S,
and g be an additive function from S into T . Let us note that g · f is additive
as a function from R into T .

Let f be a multiplicative function from R into S and g be a multiplicative
function from S into T . Let us note that g ·f is multiplicative as a function from
R into T .

Let f be a unity-preserving function from R into S and g be a unity-
preserving function from S into T . Let us note that g · f is unity-preserving
as a function from R into T . Now we state the propositions:

(34) Let us consider a field F , and an extension E of F . Then idF is a mo-
nomorphism of F and E.
Proof: Reconsider f = idF as a function from F into E. f is additive,
multiplicative, unity-preserving, and monomorphic. �

(35) Let us consider a ring R, an R-homomorphic ring S, an S-homomorphic,
R-homomorphic ring T , an additive function f from R into S, and an ad-
ditive function g from S into T . Then PolyHom(g · f) = PolyHom(g) ·
PolyHom(f).

(36) Let us consider a ring R, an R-homomorphic ring S, an R-homomorphic,
S-homomorphic ring T , an additive function f from R into S, and an addi-
tive function g from S into T . Suppose g ·f = idR. Then PolyHom(g ·f) =
idPolyRing(R). The theorem is a consequence of (35).

(37) Let us consider fields F1, F2, and an extension E of F1. If F1 ≈ F2, then
E is an extension of F2.

(38) Let us consider fields F1, F2. Suppose F1 ≈ F2. Then

(i) 0.F1 = 0.F2, and

(ii) 1.F1 = 1.F2.

(39) Let us consider fields F1, F2, and a polynomial p over F1. If F1 ≈ F2,
then p is a polynomial over F2.

(40) Let us consider fields F1, F2, and a non zero polynomial p over F1.
If F1 ≈ F2, then p is a non zero polynomial over F2. The theorem is
a consequence of (39) and (38).
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(41) Let us consider fields F1, F2, a polynomial p over F1, a polynomial q
over F2, an element a of F1, and an element b of F2. Suppose F1 ≈ F2 and
p = q and a = b. Then eval(p, a) = eval(q, b).

(42) Let us consider fields F1, F2, an extension E1 of F1, an extension E2 of
F2, a polynomial p over F1, a polynomial q over F2, an element a of E1,
and an element b of E2. Suppose F1 ≈ F2 and E1 ≈ E2 and p = q and
a = b. Then ExtEval(p, a) = ExtEval(q, b). The theorem is a consequence
of (41).

(43) Let us consider fields F1, F2, and an F1-algebraic extension E of F1.
If F1 ≈ F2, then E is an F2-algebraic extension of F2. The theorem is
a consequence of (37), (40), and (42).

(44) Let us consider fields F1, F2, and an algebraic closure E of F1. If F1 ≈ F2,
then E is an algebraic closure of F2. The theorem is a consequence of (43).

Let X be a set. We say that X is field-membered if and only if

(Def. 12) for every object x such that x ∈ X holds x is a field.

Observe that there exists a set which is field-membered and non empty.
Let X be a non empty, field-membered set.
One can check that an element of X is a field. Let F be a field. The functor

SubFields(F ) yielding a set is defined by

(Def. 13) for every object o, o ∈ it iff there exists a strict field K such that o = K
and K is a subfield of F .

One can check that SubFields(F ) is non empty and field-membered. Now
we state the proposition:

(45) Let us consider fields F , K. Then K ∈ SubFields(F ) if and only if K is
a strict subfield of F .

6. Uniqueness of Algebraic Closures

Let F be a field, E be an extension of F , L be an F -monomorphic field,
and f be a monomorphism of F and L. The functor ExtSet(f,E) yielding a non
empty set is defined by the term

(Def. 14) {〈〈K, g〉〉, where K is an element of SubFields(E), g is a function from K
into L : there exists an extension K1 of F and there exists a function g1
from K1 into L such that K1 = K and g1 = g and g1 is monomorphic and
f -extending}.

Note that every element of ExtSet(f,E) is pair.



290 christoph schwarzweller

Let p be an element of ExtSet(f,E). One can verify that the functor (p)1
yields a strict extension of F . One can verify that the functor (p)2 yields a func-
tion from (p)1 into L. Now we state the proposition:

(46) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, a strict extensionK of F , and a function
g from K into L. Suppose g is monomorphic. Then 〈〈K, g〉〉 ∈ ExtSet(f,E)
if and only if E is an extension of K and F is a subfield of K and g is
f -extending. The theorem is a consequence of (45).

Let F be a field, E be an extension of F , L be an F -monomorphic field, f
be a monomorphism of F and L, and p, q be elements of ExtSet(f,E). We say
that p ¬ q if and only if

(Def. 15) (q)1 is an extension of (p)1 and for every extension K of (p)1 and for
every function g from K into L such that K = (q)1 and g = (q)2 holds g
is (p)2-extending.

Let S be a non empty subset of ExtSet(f,E). We say that S is ascending if
and only if

(Def. 16) for every elements p, q of S, p ¬ q or q ¬ p.
One can check that there exists a non empty subset of ExtSet(f,E) which

is ascending. Now we state the propositions:

(47) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, and an element p of ExtSet(f,E). Then
p ¬ p.

(48) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, and elements p, q of ExtSet(f,E). If
p ¬ q ¬ p, then p = q.

(49) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, and elements p, q, r of ExtSet(f,E).
If p ¬ q ¬ r, then p ¬ r.

Let F be a field, E be an extension of F , L be an F -monomorphic field, f
be a monomorphism of F and L, and S be a non empty subset of ExtSet(f,E).
The functor unionCarrier(S, f,E) yielding a non empty set is defined by the
term

(Def. 17)
⋃

the set of all the carrier of (p)1 where p is an element of S.

Let S be an ascending, non empty subset of ExtSet(f,E). The functors:
unionAdd(S, f,E) and unionMult(S, f,E) yielding binary operations on union
Carrier(S, f,E) are defined by conditions

(Def. 18) for every elements a, b of unionCarrier(S, f,E), there exists an element
p of S and there exist elements x, y of (p)1 such that x = a and y = b and
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unionAdd(S, f,E)(a, b) = x+ y,

(Def. 19) for every elements a, b of unionCarrier(S, f,E), there exists an element
p of S and there exist elements x, y of (p)1 such that x = a and y = b and
unionMult(S, f,E)(a, b) = x · y,

respectively. The functors: unionOne(S, f,E) and unionZero(S, f,E) yielding
elements of unionCarrier(S, f,E) are defined by conditions

(Def. 20) there exists an element p of S such that unionOne(S, f,E) = 1(p)1 ,

(Def. 21) there exists an element p of S such that unionZero(S, f,E) = 0(p)1 ,

respectively. The functor unionField(S, f,E) yielding a strict double loop struc-
ture is defined by

(Def. 22) the carrier of it = unionCarrier(S, f,E) and the addition of it = union
Add(S, f,E) and the multiplication of it = unionMult(S, f,E) and the one
of it = unionOne(S, f,E) and the zero of it = unionZero(S, f,E).

Now we state the propositions:

(50) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, a non empty subset S of ExtSet(f,E),
elements p, q of S, and an element a of (p)1. If p ¬ q, then a ∈ the carrier
of (q)1.

(51) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, an ascending, non empty subset S of
ExtSet(f,E), and an element p of S. Then

(i) 1unionField(S,f,E) = 1(p)1 , and

(ii) 0unionField(S,f,E) = 0(p)1 .

(52) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, an ascending, non empty subset S of
ExtSet(f,E), elements a, b of unionField(S, f,E), an element p of S, and
elements x, y of (p)1. If x = a and y = b, then a+b = x+y and a ·b = x ·y.

Let F be a field, E be an extension of F , L be an F -monomorphic field,
f be a monomorphism of F and L, and S be an ascending, non empty subset
of ExtSet(f,E). Let us observe that unionField(S, f,E) is non degenerated and
unionField(S, f,E) is Abelian, add-associative, right zeroed, and right comple-
mentable and unionField(S, f,E) is commutative, associative, well unital, di-
stributive, and almost left invertible. Now we state the proposition:

(53) Let us consider a field F , an extension E of F , an F -monomorphic
field L, a monomorphism f of F and L, an ascending, non empty sub-
set S of ExtSet(f,E), and an element p of S. Then (p)1 is a subfield of
unionField(S, f,E).
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Proof: SetK = unionField(S, f,E). The addition of (p)1 = (the addition
ofK) � (the carrier of (p)1). The multiplication of (p)1 = (the multiplicat-
ion of K) � (the carrier of (p)1). 1(p)1 = 1K and 0K = 0(p)1 . �

Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, and an ascending, non empty subset S of
ExtSet(f,E). Now we state the propositions:

(54) F is a subfield of unionField(S, f,E). The theorem is a consequence of
(53).

(55) unionField(S, f,E) is a subfield of E.
Proof: Set K = unionField(S, f,E). The carrier of K ⊆ the carrier
of E. The addition of K = (the addition of E) � (the carrier of K).
The multiplication of K = (the multiplication of E) � (the carrier of K).
Set p = the element of S. Consider U being an element of SubFields(E),
g being a function from U into L such that p = 〈〈U, g〉〉 and there exists
an extension K1 of F and there exists a function g1 from K1 into L such
that K1 = U and g1 = g and g1 is monomorphic and f -extending. (p)1 is
a subfield of E. 1K = 1(p)1 . 0K = 0(p)1 . �

Let F be a field, E be an extension of F , L be an F -monomorphic field, f
be a monomorphism of F and L, and S be an ascending, non empty subset of
ExtSet(f,E). Note that unionField(S, f,E) is F -extending.

The functor unionExt(S, f,E) yielding a function from unionField(S, f,E)
into L is defined by

(Def. 23) for every element p of S, it�(the carrier of (p)1) = (p)2.

Now we state the proposition:

(56) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, and an ascending, non empty subset S
of ExtSet(f,E). Then unionExt(S, f,E) is monomorphic and f -extending.
The theorem is a consequence of (51) and (53).

Let F be a field, E be an extension of F , L be an F -monomorphic field, f
be a monomorphism of F and L, and S be an ascending, non empty subset of
ExtSet(f,E). The functor supS yielding an element of ExtSet(f,E) is defined
by the term

(Def. 24) 〈〈unionField(S, f,E), unionExt(S, f,E)〉〉.
Now we state the propositions:

(57) Let us consider a field F , an extension E of F , an F -monomorphic field
L, a monomorphism f of F and L, an ascending, non empty subset S of
ExtSet(f,E), and an element p of S. Then p ¬ supS. The theorem is
a consequence of (53).
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(58) Let us consider a field F , an extension E of F , an F-algebraic element a
of E, an F -monomorphic, algebraic closed field L, and a monomorphism f
of F and L. Then there exists a function g from FAdj(F, {a}) into L such
that g is monomorphic and f -extending. The theorem is a consequence of
(3) and (2).

(59) Let us consider a field F , an F-algebraic extension E of F , an F -monomor-
phic, algebraic closed field L, and a monomorphism f of F and L. Then
there exists a function g from E into L such that g is monomorphic and
f -extending. The theorem is a consequence of (47), (49), (48), (57), (45),
(58), (10), and (1).

(60) Let us consider a field F , an extension E of F , an F -homomorphic,
E-homomorphic field L, a homomorphism f from F to L, and a homo-
morphism g from E to L. Suppose g is f -extending. Then Im f is a subfield
of Im g.

(61) Let us consider a field F , an algebraic closure A of F , an A-monomorphic,
A-homomorphic field L, and a monomorphism g of A and L. Then Im g
is algebraic closed.
Proof: Reconsider f = g−1 as a function from Im g into A. f is additive,
multiplicative, unity-preserving, and monomorphic. �

(62) Let us consider a field F , an F -monomorphic, F -homomorphic field L,
an algebraic closure A of F , and a monomorphism f of F and L. Suppose
L is an algebraic closure of Im f . Let us consider a function g from A
into L. If g is monomorphic and f -extending, then g is isomorphism. The
theorem is a consequence of (61), (60), and (33).

(63) Let us consider a field F , and algebraic closures A1, A2 of F . Then A1
and A2 are isomorphic over F .
Proof: Reconsider L = A2 as an F -monomorphic, F -homomorphic, al-
gebraic closed field. Reconsider f = idF as a monomorphism of F and L.
Consider g being a function from A1 into L such that g is monomorphic
and f -extending. The double loop structure of F ≈ F . Im f = the double
loop structure of F by [4, (7)]. L is an algebraic closure of Im f . g is
isomorphism. �
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