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Summary. This is the second part of a two-part article formalizing exi-
stence and uniqueness of algebraic closures, using the Mizar [2], [I] formalism.
Our proof follows Artin’s classical one as presented by Lang in [3]. In the first
part we proved that for a given field F' there exists a field extension E such
that every non-constant polynomial p € F[X] has a root in E. Artin’s proof ap-
plies Kronecker’s construction to each polynomial p € F[X]\F simultaneously.
To do so we needed the polynomial ring F[X1, X2, ...] with infinitely many va-
riables, one for each polynomal p € F[X]|\F. The desired field extension E then
is F[X1, X2, ...]\I, where I is a maximal ideal generated by all non-constant po-
lynomials p € F[X]. Note, that to show that I is maximal Zorn’s lemma has to
be applied.

In this second part this construction is iterated giving an infinite sequence
of fields, whose union establishes a field extension A of F', in which every non-
constant polynomial p € A[X] has a root. The field of algebraic elements of A
then is an algebraic closure of F'. To prove uniqueness of algebraic closures, e.g.
that two algebraic closures of F' are isomorphic over F', the technique of extending
monomorphisms is applied: a monomorphism F' — A, where A is an algebraic
closure of I’ can be extended to a monomorphism E — A, where E is any
algebraic extension of F'. In case that F is algebraically closed this monomorphism
is an isomorphism. Note that the existence of the extended monomorphism again
relies on Zorn’s lemma.
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1. PRELIMINARIES

Let L be a non empty double loop structure. One can verify that the double
loop structure of L is non empty. Let L be a non trivial double loop structure.
One can verify that the double loop structure of L is non trivial. Let L be a non
degenerated double loop structure. One can verify that the double loop structure
of L is non degenerated. Let L be an add-associative double loop structure. One
can check that the double loop structure of L is add-associative.

Let L be a right zeroed double loop structure. Let us note that the double
loop structure of L is right zeroed. Let L be a right complementable double loop
structure. Observe that the double loop structure of L is right complementable.
Let L be an Abelian double loop structure. Let us observe that the double loop
structure of L is Abelian. Let L be an associative double loop structure. One
can check that the double loop structure of L is associative.

Let L be a well unital, non empty double loop structure. Observe that the do-
uble loop structure of L is well unital. Let L be a left distributive, non empty
double loop structure. One can check that the double loop structure of L is
left distributive. Let L be a right distributive, non empty double loop struc-
ture. Observe that the double loop structure of L is right distributive. Let L
be a commutative double loop structure. One can verify that the double loop
structure of L is commutative.

Let L be an integral domain-like, non empty double loop structure. Let
us note that the double loop structure of L is integral domain-like. Let L be
an almost left invertible double loop structure. Observe that the double loop
structure of L is almost left invertible. Now we state the proposition:

(1) Let us consider a field F. Then the double loop structure of F' ~ F.

Let F be a field. Let us note that there exists an extension of F' which is strict.
Let L be an F-monomorphic field. Let us note that there exists an extension
of L which is F-homomorphic and F-monomorphic and there exists an element
of the carrier of PolyRing(F') which is monic and irreducible. Let F' be a non
algebraic closed field. Observe that there exists an element of the carrier of
PolyRing(F') which is monic and non constant and has not roots. Now we state
the propositions:

(2) Let us consider a field Fj, an Fj-monomorphic, Fj-homomorphic field
F5, a monomorphism A of F} and Fb, and an element p of the carrier of
PolyRing(F). Then (PolyHom(h))(—p) = —(PolyHom(h))(p).

(3) Let us consider a field Fj, an Fj-monomorphic, Fj-homomorphic field

F5, a monomorphism h of F} and F5, and elements p, g of the carrier of
PolyRing(F}). If p | ¢, then (PolyHom(h))(p) | (PolyHom(h))(q).
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Let F7 be a field, F5 be an Fj-monomorphic, Fi-homomorphic field, h be
a monomorphism of F; and Fb, and p be a non constant element of the car-
rier of PolyRing(F}). Let us observe that (PolyHom(h))(p) is non constant as
an element of the carrier of PolyRing(F3).
Let R be a GCD domain and a, b be elements of R. We say that a and b are
relatively prime if and only if
(Def. 1) 1g is a GCD of a and b.
Let us consider a field F' and elements p, ¢ of the carrier of PolyRing(F).
Now we state the propositions:
(4) p and q are relatively prime if and only if ged(p,q) = 1.F.
(5) If p and q are relatively prime, then p and ¢ have no common roots.
(6) Let us consider a field F', and an element p of the carrier of PolyRing(F).
Then there exists an extension E of F' and there exists an F-algebraic

element a of E such that p = MinPoly(a, F) if and only if p is monic and
irreducible.

(7) Let us consider a field F, and an irreducible element p of the carrier of
PolyRing(F'). Then there exists an F-finite extension E of F' such that
(i) deg(E,F) = deg(p), and
(ii) p has a root in E.

The theorem is a consequence of (6).

(8) Let us consider a field F', and a non constant element p of the carrier of
PolyRing(F'). Then there exists an F-finite extension E of F' such that

(i) p has a root in F, and
(i) deg(E, F) < deg(p).
The theorem is a consequence of (7).

(9) Let us consider a field F', an F-algebraic extension E of F', an E-extending
extension K of F, and an element a of K. If a is Fralgebraic, then a is
Falgebraic.

(10) Let us consider fields Fi, F5, L, an extension Fj of F}, a Ej-extending
extension Kj of FY, a function h; from F} into L, a function hy from FE;
into L, and a function hg from K7 into L. Suppose hs is hi-extending and
hs is ho-extending. Then hg is hi-extending.

Let F be a field. Let us observe that every extension of F' is F-monomorphic
and F-homomorphic.

Let E be an extension of F. Let us note that there exists a field which is
FE-homomorphic, F-monomorphic, F-homomorphic, and F-monomorphic.
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2. SEQUENCES OF FIELDS

A sequence is a function defined by
(Def. 2) dom it = N.

Let us observe that every sequence is N-defined.

Let f be a binary relation. We say that f is field-yielding if and only if
(Def. 3) for every object x such that = € rng f holds z is a field.

Observe that there exists a sequence which is field-yielding and every func-
tion which is field-yielding is also 1-sorted yielding.

Let f be a field-yielding sequence and i be an element of N. One can check
that the functor f(i) yields a field. Let ¢ be a natural number. Observe that the
functor f(i) yields a field.

The scheme RecEzField deals with a field A and a ternary predicate P and
states that

(Sch. 1) There exists a field-yielding sequence f such that f(0) = A and for every
natural number n, Pn, f(n), f(n + 1)]
provided

e for every natural number n and for every field x, there exists a field y such
that P[n, x, y].

Let f be a field-yielding sequence. We say that f is ascending if and only if
(Def. 4) for every element i of N, f(i + 1) is an extension of f(7).

Note that there exists a field-yielding sequence which is ascending.
Let f be a field-yielding sequence. The support of f yielding a non empty
set is defined by the term
(Def. 5) the set of all the carrier of f(i) where 7 is an element of N.
Now we state the propositions:

(11) Let us consider an ascending, field-yielding sequence f, elements i, j of
N, and an element a of f(i). If ¢ < j, then a € the carrier of f(j).
PROOF: Define P[natural number] = there exists an element k& of N such
that k = ¢+ $; and a € the carrier of f(k). For every natural number £k,
P[k]. Consider n being a natural number such that i +n = j. O

(12) Let us consider an ascending, field-yielding sequence f, and elements i,

j of N. If i < j, then f(j) is an extension of f(7).
PROOF: Define P[natural number| = there exists an element k of N such
that k = i + $; and f(k) is an extension of f(7). P[0]. For every natural
number k, P[k]|. Consider n being a natural number such that i +n = j.
O
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(13) Let us consider an ascending, field-yielding sequence f, elements i, j of
N, elements x, y2 of f(i), and elements x3, y3 of f(j). Suppose z2 = x3
and y2 = y3. Then

(i) z2 +y2 = v3 +y3, and
(ii) z2-y2 = 73 - ys.
The theorem is a consequence of (12).
Let f be an ascending, field-yielding sequence. The functor addseq(f) yiel-
ding a binary operation on the support of f is defined by

(Def. 6) for every elements a, b of the support of f, there exists an element ¢ of
N and there exist elements x, y of f(i) such that z = a and y = b and
it(a,b) =z +y.

The functor multseq(f) yielding a binary operation on the support of f is
defined by

(Def. 7) for every elements a, b of the support of f, there exists an element ¢ of
N and there exist elements z, y of f(i) such that + = a and y = b and

it(a,b) =z - y.
The functor SeqField(f) yielding a strict double loop structure is defined by

(Def. 8) the carrier of it = the support of f and the addition of it = addseq(f)
and the multiplication of it = multseq(f) and the one of it = 1) and
the zero of it = 0y(q).

Now we state the propositions:

(14) Let us consider an ascending, field-yielding sequence f, and an element
1 of N. Then

(1) lgeqrield(s) = Lf@i), and
(i) Oseqrield(fr) = Of(i)-
PROOF: Define P[natural number] = there exists an element &k of N such
that £ = $; and Lty = 1y(0) and Oy = Oy (qy. For every natural number
k, Plk]. O
(15) Let us consider an ascending, field-yielding sequence f, elements a, b of
SeqField(f), an element i of N, and elements z, y of f(i). If x = a and
y=>b,thena+b=x+y and a-b=x-y. The theorem is a consequence
of (13).
Let f be an ascending, field-yielding sequence. Observe that SeqField(f) is
non degenerated and SeqField(f) is Abelian, add-associative, right zeroed, and

right complementable and SeqField(f) is commutative, associative, well unital,
distributive, and almost left invertible. Now we state the propositions:
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(16) Let us consider an ascending, field-yielding sequence f, and an element
i of N. Then f(i) is a subfield of SeqField(f).
PROOF: Set F' = f(i). Set K = SeqField(f). The addition of F' =
(the addition of K) | (the carrier of F'). The multiplication of F' =
(the multiplication of K) | (the carrier of F'). 1p = 1x and Op = 0g. O
(17) Let us consider a field E, and an ascending, field-yielding sequence f.
Suppose for every element i of N, f(i) is a subfield of E. Then SeqField( f)
is a subfield of F.
PROOF: Set F' = SeqField(f). The carrier of F' C the carrier of K.
The addition of F' = (the addition of K) | (the carrier of F'). The multipli-
cation of F' = (the multiplication of K) | (the carrier of F). O
(18) Let us consider an ascending, field-yielding sequence f, and a finite
subset X of SeqField(f). Then there exists an element ¢ of N such that
X C the carrier of f(7).
PROOF: Define P[natural number] =for every finite subset X of SeqField( f)
such that X = $; there exists an element i of N such that X C the carrier
of f(i). P[0]. P[1]. For every natural number k, P[k]. Consider n being
a natural number such that X = n. Consider i being an element of N such
that X C the carrier of f(i). O

3. MAXIMAL ALGEBRAIC AND ALGEBRAIC CLOSED FIELDS

Let F be a field. We say that F' is maximal algebraic if and only if
(Def. 9) for every Fralgebraic extension E of F', E ~ F.
Let us consider a field F'. Now we state the propositions:
(19) F is maximal algebraic if and only if F' is algebraic closed. The theorem
is a consequence of (7).
(20) F is algebraic closed if and only if every non constant polynomial over
F has roots.
(21) F is algebraic closed if and only if for every irreducible element p of
the carrier of PolyRing(F'), deg(p) = 1.
(22) F is algebraic closed if and only if for every non constant polynomial p
over F', p splits in F.
(23) F is algebraic closed if and only if every non constant, monic polynomial
over F'is a product of linear polynomials of F'.
(24) F is algebraic closed if and only if for every elements p, ¢ of the carrier
of PolyRing(F'), p and q are relatively prime iff p and ¢ have no common
roots. The theorem is a consequence of (4) and (5).
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(25) F is algebraic closed if and only if for every F-algebraic extension E of
F, E =~ F. The theorem is a consequence of (19).

(26) F is algebraic closed if and only if for every F-finite extension E of F,
E ~ F. The theorem is a consequence of (19).

Let us note that every field which is algebraic closed is also infinite.

4. EXISTENCE OF ALGEBRAIC CLOSURES

Let F be a field. A closure sequence of F' is an ascending, field-yielding

sequence defined by
(Def. 10) it(0) = F and for every element i of N and for every field K and for
every extension E of K such that K = it(i) and E = it(i + 1) for every
non constant element p of the carrier of PolyRing(K), p has a root in E.

Now we state the proposition:

(27) Let us consider an ascending, field-yielding sequence f, and a polynomial
p over SeqField(f). Then there exists an element ¢ of N such that p is
a polynomial over f(i). The theorem is a consequence of (18) and (16).

Let F' be a field and f be a closure sequence of F. Let us observe that
SeqField(f) is F-extending and SeqField(f) is algebraic closed.

Now we state the proposition:

(28) Let us consider a field F'. Then there exists an extension E of F' such
that FE is algebraic closed.

Let F be a field. An algebraic closure of F' is an extension of F' defined by

(Def. 11) it is Fralgebraic and algebraic closed.

Note that every algebraic closure of F' is Fralgebraic and algebraic closed
and there exists an algebraic closed field which is F-homomorphic and F-
monomorphic. Now we state the propositions:

(29) Let us consider a field F'. Then there exists a field £ such that E is
an algebraic closure of F'.

(30) Let us consider a field F', and an F-algebraic extension F of F. Then
there exists an algebraic closure A of F' such that E is a subfield of A.

Let F be a field and E be an F-algebraic extension of F'. Let us observe that
there exists an algebraic closure of F' which is E-extending.

Now we state the propositions:

(31) Let us consider a field F', and an F-algebraic extension E of F. Then
every algebraic closure of F is an algebraic closure of F'.

(32) Let us consider a field F', an extension F of F', and an algebraic closure
A of F.If A is E-extending, then A is an algebraic closure of E.
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(33) Let us consider a field F, and algebraic closures Ay, Ay of F. If A; is
Ag-extending, then Ay ~ A;. The theorem is a consequence of (25).

5. SOME MORE PRELIMINARIES

Let R be a ring and S be an R-homomorphic ring. Observe that there exists
a ring which is S-homomorphic and R-homomorphic.

Let T be an S-homomorphic ring, f be an additive function from R into S,
and g be an additive function from S into T'. Let us note that g - f is additive
as a function from R into T

Let f be a multiplicative function from R into S and g be a multiplicative
function from S into T'. Let us note that g- f is multiplicative as a function from
R into T

Let f be a unity-preserving function from R into S and g be a unity-
preserving function from S into 7. Let us note that ¢ - f is unity-preserving
as a function from R into T'. Now we state the propositions:

(34) Let us consider a field F', and an extension E of F'. Then idg is a mo-
nomorphism of F' and FE.

PROOF: Reconsider f = idp as a function from F into E. f is additive,
multiplicative, unity-preserving, and monomorphic. [J

(35) Let us consider a ring R, an R-homomorphic ring S, an S-homomorphic,
R-homomorphic ring T', an additive function f from R into .S, and an ad-
ditive function g from S into T. Then PolyHom(g - f) = PolyHom(g) -
PolyHom( f).

(36) Let us consider a ring R, an R-homomorphic ring S, an R-homomorphic,
S-homomorphic ring T, an additive function f from R into S, and an addi-
tive function g from S into 7. Suppose g- f = idg. Then PolyHom(g- f) =
idpolyRing(r)- The theorem is a consequence of (35).

(37) Let us consider fields Fy, F», and an extension E of Fy. If F} ~ Fj, then
F is an extension of F5.

(38) Let us consider fields F;, F». Suppose F) ~ F,. Then
(i) 0.F; = 0.F, and
(i) 1.Fy = 1.F.
(39) Let us consider fields Fy, Fb, and a polynomial p over Fij. If F} ~ Fb,
then p is a polynomial over F5.

(40) Let us consider fields Fj, F», and a non zero polynomial p over Fj.
If F1 ~ F3, then p is a non zero polynomial over F,. The theorem is
a consequence of (39) and (38).
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(41) Let us consider fields Fy, F5, a polynomial p over Fj, a polynomial ¢
over Fy, an element a of F7, and an element b of F5. Suppose F; = F5 and
p = q and a = b. Then eval(p,a) = eval(q, b).

(42) Let us consider fields Fy, Fy, an extension F; of Fj, an extension Fy of
F5, a polynomial p over F}, a polynomial ¢ over F5, an element a of Eq,
and an element b of Fy. Suppose F; =~ F> and Fy =~ Fs and p = g and
a = b. Then ExtEval(p,a) = ExtEval(q,b). The theorem is a consequence
of (41).

(43) Let us consider fields Fj, Fy, and an Fralgebraic extension E of Fj.
If Fi ~ Fy, then FE is an Fyalgebraic extension of F5. The theorem is
a consequence of (37), (40), and (42).

(44) Let us consider fields Fy, Fy, and an algebraic closure E of Fy. If F} ~ F;,
then F is an algebraic closure of F5. The theorem is a consequence of (43).

Let X be a set. We say that X is field-membered if and only if
(Def. 12) for every object  such that x € X holds x is a field.

Observe that there exists a set which is field-membered and non empty.

Let X be a non empty, field-membered set.

One can check that an element of X is a field. Let F' be a field. The functor
SubFields(F') yielding a set is defined by

(Def. 13) for every object o, o € it iff there exists a strict field K such that o = K
and K is a subfield of F'.
One can check that SubFields(F') is non empty and field-membered. Now
we state the proposition:

(45) Let us consider fields F', K. Then K € SubFields(F') if and only if K is
a strict subfield of F'.

6. UNIQUENESS OF ALGEBRAIC CLOSURES

Let F be a field, F be an extension of F', L be an F-monomorphic field,
and f be a monomorphism of F' and L. The functor ExtSet(f, E) yielding a non
empty set is defined by the term

(Def. 14) {(K, g), where K is an element of SubFields(E), g is a function from K
into L : there exists an extension K; of F' and there exists a function g;
from K7 into L such that K; = K and g; = g and g1 is monomorphic and
f-extending}.

Note that every element of ExtSet(f, E) is pair.
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Let p be an element of ExtSet(f, F). One can verify that the functor (p)y
yields a strict extension of F'. One can verify that the functor (p)2 yields a func-
tion from (p)1 into L. Now we state the proposition:

(46) Let us consider a field F', an extension E of F'; an F-monomorphic field
L, a monomorphism f of F and L, a strict extension K of F', and a function
g from K into L. Suppose g is monomorphic. Then (K, g) € ExtSet(f, F)
if and only if £ is an extension of K and F' is a subfield of K and g is
f-extending. The theorem is a consequence of (45).

Let F be a field, E be an extension of F', L be an F-monomorphic field, f
be a monomorphism of F' and L, and p, ¢ be elements of ExtSet(f, E'). We say
that p < ¢ if and only if

(Def. 15) (g)1 is an extension of (p); and for every extension K of (p); and for
every function g from K into L such that K = (¢)1 and g = (¢)2 holds ¢
is (p)2-extending.

Let S be a non empty subset of ExtSet(f, E). We say that S is ascending if
and only if

(Def. 16) for every elements p, g of S, p < g or ¢ < p.

One can check that there exists a non empty subset of ExtSet(f, E') which
is ascending. Now we state the propositions:

(47) Let us consider a field F, an extension E of F', an F-monomorphic field
L, a monomorphism f of F' and L, and an element p of ExtSet(f, E'). Then
p<p.

(48) Let us consider a field F, an extension E of F', an F-monomorphic field
L, a monomorphism f of F' and L, and elements p, g of ExtSet(f, ). If
p<q<p,thenp=gq.

(49) Let us consider a field F, an extension E of F', an F-monomorphic field
L, a monomorphism f of F' and L, and elements p, ¢, r of ExtSet(f, E).
Ifp<g<r, then p<r.

Let F be a field, E be an extension of F', L be an F-monomorphic field, f
be a monomorphism of F' and L, and S be a non empty subset of ExtSet(f, E).
The functor unionCarrier(S, f, E') yielding a non empty set is defined by the
term

(Def. 17)  Jthe set of all the carrier of (p); where p is an element of S.

Let S be an ascending, non empty subset of ExtSet(f, ). The functors:
unionAdd(S, f, F) and unionMult(S, f, E) yielding binary operations on union
Carrier (S, f, E) are defined by conditions

(Def. 18) for every elements a, b of unionCarrier(S, f, ), there exists an element
p of S and there exist elements z, y of (p); such that x = a and y = b and
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unionAdd(S, f, E)(a,b) =z + vy,

(Def. 19) for every elements a, b of unionCarrier(S, f, E), there exists an element
p of S and there exist elements z, y of (p);1 such that x = a and y = b and
unionMult(S, f, E)(a,b) =z -y,

respectively. The functors: unionOne(S, f, E) and unionZero(S, f, E) yielding
elements of unionCarrier(S, f, E') are defined by conditions

(Def. 20) there exists an element p of S such that unionOne(S, f, E) = 1), ,
(Def. 21)  there exists an element p of S such that unionZero(S, f, E) = 0(,),,

respectively. The functor unionField (S, f, F) yielding a strict double loop struc-
ture is defined by

(Def. 22) the carrier of it = unionCarrier(S, f, F') and the addition of it = union
Add(S, f, F) and the multiplication of it = unionMult(S, f, F') and the one
of it = unionOne(S, f, F) and the zero of it = unionZero(S, f, F).

Now we state the propositions:

(50) Let us consider a field F, an extension E of F', an F-monomorphic field
L, a monomorphism f of F and L, a non empty subset S of ExtSet(f, F),
elements p, ¢ of S, and an element a of (p)1. If p < ¢, then a € the carrier
of (¢)1.

(51) Let us consider a field F', an extension F of F; an F-monomorphic field
L, a monomorphism f of F' and L, an ascending, non empty subset S of
ExtSet(f, E), and an element p of S. Then

(1) LunionField(s,f,E) = L(p),> and

(ii) OunionField(s,f,E) = O(p)s -

(52) Let us consider a field F', an extension E of F, an F-monomorphic field
L, a monomorphism f of F' and L, an ascending, non empty subset S of
ExtSet(f, E), elements a, b of unionField(S, f, E'), an element p of S, and
elements z, y of (p)1. If x = aand y = b, then a+b=z+yand a-b = z-y.

Let F be a field, F be an extension of F', L be an F-monomorphic field,
f be a monomorphism of F and L, and S be an ascending, non empty subset
of ExtSet(f, E'). Let us observe that unionField(S, f, F') is non degenerated and
unionField(S, f, F) is Abelian, add-associative, right zeroed, and right comple-
mentable and unionField(S, f, E) is commutative, associative, well unital, di-
stributive, and almost left invertible. Now we state the proposition:

(53) Let us consider a field F, an extension E of F, an F-monomorphic
field L, a monomorphism f of F and L, an ascending, non empty sub-
set S of ExtSet(f, F), and an element p of S. Then (p); is a subfield of
unionField(S, f, E).
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PROOF: Set K = unionField(S, f, E). The addition of (p)1 = (the addition
of K) | (the carrier of (p)1). The multiplication of (p); = (the multiplicat-
ion of K) | (the carrier of (p)1). 1(p), = 1k and Ox = 0(),. O
Let us consider a field F, an extension E of F', an F-monomorphic field
L, a monomorphism f of F' and L, and an ascending, non empty subset S of
ExtSet(f, E'). Now we state the propositions:

(54) F is a subfield of unionField(S, f, E). The theorem is a consequence of
(53).
(55) unionField(S, f, E) is a subfield of E.
PROOF: Set K = unionField(S, f, E). The carrier of K C the carrier
of E. The addition of K = (the addition of E) [ (the carrier of K).
The multiplication of K = (the multiplication of E) | (the carrier of K).
Set p = the element of S. Consider U being an element of SubFields(E),
g being a function from U into L such that p = (U, g) and there exists
an extension K7 of I’ and there exists a function g; from K7 into L such
that K1 = U and ¢g; = g and ¢; is monomorphic and f-extending. (p)y is
a subfield of E. 1x = 1(,),. 0k = 0p),. U
Let F' be a field, E be an extension of F', L be an F-monomorphic field, f
be a monomorphism of F' and L, and S be an ascending, non empty subset of
ExtSet(f, E'). Note that unionField(S, f, E) is F-extending.
The functor unionExt(S, f, E') yielding a function from unionField(S, f, E)
into L is defined by

(Def. 23) for every element p of S, it[(the carrier of (p)1) = (p)a.
Now we state the proposition:
(56) Let us consider a field F, an extension E of F', an F-monomorphic field
L, a monomorphism f of F' and L, and an ascending, non empty subset S

of ExtSet(f, F). Then unionExt(S, f, E') is monomorphic and f-extending.
The theorem is a consequence of (51) and (53).

Let F be a field, E be an extension of F', L be an F-monomorphic field, f
be a monomorphism of F' and L, and S be an ascending, non empty subset of
ExtSet(f, E'). The functor sup S yielding an element of ExtSet(f, E) is defined
by the term

(Def. 24)  (unionField(S, f, E), unionExt(S, f, E)).
Now we state the propositions:
(57) Let us consider a field F', an extension E of F, an F-monomorphic field
L, a monomorphism f of F' and L, an ascending, non empty subset S of

ExtSet(f, E), and an element p of S. Then p < supS. The theorem is
a consequence of (53).
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(58) Let us consider a field F', an extension E of F, an F-algebraic element a
of E/, an F-monomorphic, algebraic closed field L, and a monomorphism f
of F' and L. Then there exists a function g from FAdj(F,{a}) into L such
that g is monomorphic and f-extending. The theorem is a consequence of
(3) and (2).

(59) Let us consider a field F', an F-algebraic extension F of F', an F-monomor-
phic, algebraic closed field L, and a monomorphism f of F' and L. Then
there exists a function g from F into L such that g is monomorphic and
f-extending. The theorem is a consequence of (47), (49), (48), (57), (45),
(58), (10), and (1).

(60) Let us consider a field F, an extension E of F, an F-homomorphic,
E-homomorphic field L, a homomorphism f from F to L, and a homo-
morphism g from E to L. Suppose g is f-extending. Then Im f is a subfield
of Img.

(61) Let us consider a field F, an algebraic closure A of F', an A-monomorphic,
A-homomorphic field L, and a monomorphism g of A and L. Then Img
is algebraic closed.

PROOF: Reconsider f = g7 as a function from Im g into A. f is additive,
multiplicative, unity-preserving, and monomorphic. [J

1

(62) Let us consider a field F', an F-monomorphic, F-homomorphic field L,
an algebraic closure A of F', and a monomorphism f of F' and L. Suppose
L is an algebraic closure of Im f. Let us consider a function g from A
into L. If g is monomorphic and f-extending, then ¢ is isomorphism. The
theorem is a consequence of (61), (60), and (33).

(63) Let us consider a field F', and algebraic closures A;, Ay of F. Then A;
and As are isomorphic over F'.
PrOOF: Reconsider L = Ay as an F-monomorphic, F-homomorphic, al-
gebraic closed field. Reconsider f = idp as a monomorphism of F' and L.
Consider g being a function from A; into L such that g is monomorphic
and f-extending. The double loop structure of F' ~ F. Im f = the double
loop structure of F by [4, (7)]. L is an algebraic closure of Im f. g is
isomorphism. [J
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