Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/14671
Tytuł: | Artin’s Theorem Towards the Existence of Algebraic Closures |
Autorzy: | Schwarzweller, Christoph |
Słowa kluczowe: | algebraic closures polynomial rings with countably infinite number of variables Emil Artin |
Data wydania: | 2022 |
Data dodania: | 15-lut-2023 |
Wydawca: | DeGruyter Open |
Źródło: | Formalized Mathematics, Volume 30, Issue 3, Pages 199-207 |
Abstrakt: | This is the first part of a two-part article formalizing existenceand uniqueness of algebraic closures using the Mizar system [1], [2]. Our proof follows Artin’s classical one as presented by Lang in [3]. In this first part we prove that for a given field F there exists a field extension E such that every non-constant polynomial p ∈ F[X] has a root in E. Artin’s proof applies Kronecker’s construction to each polynomial p ∈ F[X]\F simultaneously. To do so we need the polynomial ring F[X1, X2, ...] with infinitely many variables, one for each polynomal p ∈ F [X]\F. The desired field extension E then is F[X1, X2, ...]\I, where I is a maximal ideal generated by all non-constant polynomials p ∈ F[X]. Note, that to show that I is maximal Zorn’s lemma has to be applied. In the second part this construction is iterated giving an infinite sequence of fields, whose union establishes a field extension A of F, in which every non-constant polynomial p ∈ A[X] has a root. The field of algebraic elements of A then is an algebraic closure of F. To prove uniqueness of algebraic closures, e.g.that two algebraic closures of F are isomorphic over F, the technique of extending monomorphisms is applied: a monomorphism F−→A, where A is an algebraicclosure of F can be extended to a monomorphism E−→A, where E is any algebraic extension of F. In case that E is algebraically closed this monomorphism is an isomorphism. Note that the existence of the extended monomorphism again relies on Zorn’s lemma. |
Afiliacja: | Christoph Schwarzweller - Institute of Informatics, University of Gdańsk, Poland |
URI: | http://hdl.handle.net/11320/14671 |
DOI: | 10.2478/forma-2022-0014 |
ISSN: | 1426-2630 |
e-ISSN: | 1898-9934 |
Typ Dokumentu: | Article |
metadata.dc.rights.uri: | https://creativecommons.org/licenses/by-sa/3.0/ |
Właściciel praw: | © 2022 The Author(s) CC BY-SA 3.0 license |
Występuje w kolekcji(ach): | Formalized Mathematics, 2022, Volume 30, Issue 3 |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
10.2478_forma-2022-0014.pdf | 267,53 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL